Marine Biology

, Volume 88, Issue 2, pp 175–187 | Cite as

Depth limits of Bermudan scleractinian corals: a submersible survey

  • H. Fricke
  • D. Meischner


Depth distribution, zonation pattern and growth morphology of 17 hermatypic and 4 ahermatypic coral species were investigated at eight different locations along the Bermuda platform with the research submersible GEO and by SCUBA diving in August–September 1983. Hermatypic coral growth occurs to a depth of 50 to 70 m, with a single Montastrea cavernosa growing at 78 m. Dominant forms in shallow-water coral communities are Diploria sp. and Porites astreoides, while M. cavernosa, Agaricia fragilis and Scolymia cubensis occur in deep-water associations below 60 m. Vertical visibilities (up to 178 m) and distribution of the photosynthetically active radiation revealed good light penetration values (1% level at about 100 m depth), which should favour hermatypic coral growth to a much greater depth than it actually occurs. Nor should the prevailing temperatures limit the depth of coral growth. Most deep-water hermatypes observed grow on remnants of Pleistocene reefs down to about 60 m. The vast areas of large massed rhodolith nodules below 50 to 60 m are unsuitable bottom for coral colonisation. Macroalgae growth seems to be the strongest factor controlling coral growth in deep water. Bermuda stony corals have a low growth form diversity. Various intraspecific morphs may occur at the same as well as at different depths, with a general trend towards flatter shapes with depth. Comparison with a similar study on Red Sea corals suggests that annual distribution of radiant energy on the most northern Atlantic reefs of Bermuda may be responsible for the occurrence of flat and cuplike growth forms in relatively shallow water, and for the shallower depth limits of hermatypic growth.


Macroalgae Scleractinian Coral Coral Community Depth Limit Coral Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barnes, D. J.: Growth in colonial scleractinians. Bull. mar. Sci. 23, 280–298 (1973)Google Scholar
  2. Boardman, R.: Species diversity and composition of a southern Bermuda coral reef. Univ. Bridgeport mar. biol. Publ. 1, 36–48 (1978)Google Scholar
  3. Boden, B. P. and E. M. Kampa: Winter cascading from an oceanic island and its biological implication. Nature, Lond. 171, 426 (1953)Google Scholar
  4. Bradbury, R. H. and P. C. Young: Coral interaction and community structure: an analysis of spatial pattern. Mar. Ecol. Prog. Ser. 11, 265–271 (1983)Google Scholar
  5. Cairns, S. D.: Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize. In: K. Rützler and I. A. MacIntyre (Eds.), The Atlantic Barrier Reef ecosystem at Carrie Bow Cay, Belize. In: Structure and communities, pp 271–302. Washington: Smithsonian Institution Press 1982Google Scholar
  6. Clarke, G. L.: Light penetration in the Western North Atlantic and its application to biological problems. Rapp. P. V. Reun. Cons. int. Explor. Mer. 101, 3–14 (1936)Google Scholar
  7. DeGhett, V. J.: Hierarchical cluster analysis. In: Colgan, R. W. (ed.) Quantitative Ethology, pp 115–144. New York: Wiley and Sons 1978Google Scholar
  8. Dodge, R. E., A. Logan, and A. Antonius: Quantitative reef assessment studies in Bermuda: a comparison of methods and preliminary results. Bull. mar. Sci., 32, 745–760 (1982)Google Scholar
  9. Dryer, S. and A. Logan: Holocene reefs and sediments of Castle Harbour, Bermuda. J. mar. Res. 36, 399–425 (1978)Google Scholar
  10. Dustan, P.: Growth and form in the reef-building coral Montastrea annularis. Mar. Biol. 33, 101–107 (1975)Google Scholar
  11. Dustan, P.: Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis (Ellis and Solander) in relation to depth on a West Indian coral reef. Bull. mar. Sci. 29, 79–95 (1979)Google Scholar
  12. Focke, J. W. and C. D. Gebelein: Marine lithification of reef rock and rhodolites at a fore-reef slope locality off Bermuda. Geol. Mijnbouw 57, 163–171 (1978)Google Scholar
  13. Foster, A. B.: Phenotypic plasticity in the reef coral Montastrea annularis (Ellis and Solander) and Siderastrea siderea (Ellis and Solander). J. exp. mar. Biol. Ecol. 39, 25–54 (1979)Google Scholar
  14. Frazier, W. J.: Description of reefs in Castle Harbour, Bermuda. Spec. Publs. Berm. Biol. Stn. Res. 6, 63–72 (1970)Google Scholar
  15. Fricke, H. W. and H. Schuhmacher: The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). P.S.Z.N.I.: Mar. Ecol. 4, 163–194 (1983)Google Scholar
  16. Garrett, P., D. L. Smith, A. O. Wilsop and D. Patriquin: Physiography ecology and sediments of two Bermuda patch reefs. J. Geol. 79, 647–668 (1971)Google Scholar
  17. Goreau, T. F.: The ecology of Jamaican coral reefs. I. Species composition and zonation. Ecology 40, 67–90 (1959)Google Scholar
  18. Goreau, T. F.: Wachstum und Kalkanlagerung bei Riffkorallen. Endeavour (Jan.), 32–39 (1961)Google Scholar
  19. Goreau, T. F.: Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef builders. N.Y. Acad. Sci. Ann. 109, 127–167 (1963)Google Scholar
  20. Goreau, T. F. and D. Hartman: Boring sponges as controlling factors in the formation and maintenance of coral reefs. In: Mechanisms of hard tissue destruction, pp 25–54. Publication No. 75 of Am. Ass. Adv. Sci. Washington, D.C. 1963Google Scholar
  21. Goreau, T. F. and J. W. Wells: The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull. mar. Sci. 17, 442–453 (1967)Google Scholar
  22. Graus, R. R. and I. G. MacIntyre: Light control of growth form in colonial reef corals: computer simulation. Science, N.Y. 193, 895–897 (1976)Google Scholar
  23. Graus, R. R. and I. G. MacIntyre: Variation in growth forms of the reef coral Montastrea annularis (Ellis and Solander): a quantitative evaluation of growth response to light distribution using computer simulation. In: The Atlantic Barrier Reef ecosystem at Carrie Bow Cay, Belize, I: Structure and communities. Ed. by K. Rützler and G. MacIntyre. Smithson. Contrib. mar. Sci. 12, 441–464 (1982)Google Scholar
  24. Ivanoff, A., Jerlov, N. and T. H. Waterman: A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda. Limnol. Oceanogr. 6, 129–148 (1961)Google Scholar
  25. James, N. P. and R. G. Ginsburg: The seaward margin of Belize barrier and atoll reefs. Int. Ass. Sediment. Spec. Publ. 3, 1–191 (1979)Google Scholar
  26. Jaubert, J.: Light, metabolism and growth forms of the hermatypic scleractinian coral Synaraea convexa Verrill in the lagoon of Moorea (French Polynesia). Proc. Third Int. Coral Reef Symp. Miami 1, 483–488 (1977)Google Scholar
  27. Johannes, R. E., W. J. Wiebe, C. J. Crossland, D. W. Rimmer and S. V. Smith: Latitutinal limits of coral reef growth. Mar. Ecol. Prog. Ser. 11, 105–111 (1983)Google Scholar
  28. Kühlmann, D.: Zusammensetzung und Ökologie von Tiefwasserkorallen-assoziationen. Wiss. Zeitsch. Humboldt-Universität Berlin, Math.-Nat. R. XXXI (3), 233–243 (1982)Google Scholar
  29. Lang, J.: Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull. mar. Sci. 23, 260–279 (1973)Google Scholar
  30. Lang, J.: Biological zonation at the base of a reef. Am. Sci. 62, 272–281 (1974)Google Scholar
  31. Logan, A.: Interspecific aggression in hermatypic corals from Bermuda. Coral Reefs 3, 131–138 (1984)Google Scholar
  32. Loya, Y.: Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972)Google Scholar
  33. Mayor, A. G.: The effects of temperature on tropical marine animals. Carnegie Inst. Pub. 183, 1–124 (1914)Google Scholar
  34. Mayor, A. G.: The lower temperature at which reef-corals lose their ability to capture food. Yearbook. Carnegie Inst. Washington, D.C. 14, 212 (1915)Google Scholar
  35. Meischner, D. and U. Meischner: Bermuda South Shore Reef Morphology. A preliminary report, Vol. 2, pp 243–250: Miami: Proc. Third Int. Coral Reef Symp. 1977Google Scholar
  36. Morris, B., J. Barnes, F. Brown and J. Markham: The Bermuda marine environment. Bermuda Biol. Sta. Spec. Publ. 15, 1–120 (1977)Google Scholar
  37. Porter, J. W.: Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am. Nat. 110, 731–742 (1976)Google Scholar
  38. Rinkevich, B. and Y. Loya: Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs 1, 161–172 (1983)Google Scholar
  39. Roberts, H. H., L. J. Rouse, N. D. Walker and J. H. Hudson: Cold water stress in Florida Bay and Northern Bahamas: a product of winter cold-air outbreaks. J. Sediment. Petrol. 52, 145–155 (1982)Google Scholar
  40. Roos, P. J.: Growth and the occurrence of the reef coral Porites astreoides Lamarck in relation to submarine radiance distribution. Dissertation, Utrecht 1967Google Scholar
  41. Sheppard, C. R. C.: Coral cover, zonation and diversity of reef slopes of Chagos Atolls, and population structures of the major species. Mar. Ecol. Prog. Ser. 2, 193–205 (1980)Google Scholar
  42. Shinn, E. A.: Coral growth rate, an environmental indicator. J. Palaeontol. 40, 233–240 (1966)Google Scholar
  43. Siegel, S.: Nonparametric statistics, 312 pp. Kogakusha: McGraw Hill 1956Google Scholar
  44. Sokal, R. R. and P. H. Sneath: Principles of numerical taxonomy, 359 pp. San Francisco and London, W. H. Freeman Co., 1963Google Scholar
  45. Stanley, D. J. and J. P. Swift: Bermudas reef-front platform: bathymetry and significance. Mar. Geol. 6, 479–500 (1968)Google Scholar
  46. Verrill, A. E.: Additions to the Anthozoa and Hydrozoa of the Bermudas. Trans. Connecticut Acad. Arts Sci. 10, 551–572 (1900)Google Scholar
  47. Verrill, A. E.: Variations and nomenclature of Bermudian, West Indian and Brazilian reef corals with notes on various Indopacific corals. Trans. Connecticut Acad. Arts Sci. 11, 63–168 (1901a)Google Scholar
  48. Verrill, A. E.: Comparison of the Bermudian, West Indian and Brazilian coral faunae. Trans. Connecticut Acad. Arts Sci., 11, 169–206 (1901b)Google Scholar
  49. Vaughan, T. W.: Corals and the formation of coral reefs. Ann. Rept. Smithsonian Inst. 17, 189–238 (1919)Google Scholar
  50. Yamazato, K.: Bathymetric distribution of corals in the Ryukyu Islands. Proc. Symp. Corals and Coral Reefs, 1969. Mar. Biol. Ass. India, 121–133 (1972)Google Scholar
  51. Zar, J. H.: Biostatistical analysis 620 pp. Englewood Cliffs, New Jersey: Prentice Hall, Inc. 1974Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. Fricke
    • 1
  • D. Meischner
    • 2
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesenGermany
  2. 2.Institut für Geologie und Paläontologie der Georg-August-UniversitätGöttingenGermany

Personalised recommendations