Marine Biology

, Volume 88, Issue 2, pp 143–148 | Cite as

Microbial food partitioning by three species of benthic copepods

  • K. R. Carman
  • D. Thistle
Article

Abstract

Using radioactively labeled bacteria and photoautotrophs in undisturbed sediment cores, we show that three cooccurring species of benthic copepods feed on different microbial food sources in their natural environment. Specifically, Thompsonula hyaenae feeds on photoautotrophs, Halicyclops coulli feeds on bacteria, and Zausodes arenicolus feeds on both photoautotrophs and bacteria. Species of benthic copepods feed differently from one another in the field, and meiofaunal species' distributions could be influenced by distributions of their preferred microbial food.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alexander, M.: Microbial ecology, 511 pp. New York: John Wiley and Sons 1971Google Scholar
  2. Anderson, J. W. and G. C. Stephens: Uptake of organic material by aquatic invertebrates. IV. Role of epiflora in apparent uptake of glycine by marine invertebrates. Mar. Biol. 4, 243–249 (1969)Google Scholar
  3. Barnett, P. R. O.: Distribution and ecology of harpacticoid copepods of an intertidal mudflat. Int. Revue ges. Hydrobiol. Hydrogr. 53, 177–209 (1968)Google Scholar
  4. Bell, S. S.: Meiofauna-macrofauna interactions in a high salt marsh habitat. Ecol. Monogr. 50, 487–505 (1980)Google Scholar
  5. Brown, T. J. and J. R. Sibert: Food of some benthic harpacticoid copepods. J. Fish. Res. Bd Can. 34, 1028–1031 (1977)Google Scholar
  6. Cadee, G. C. and J. Hegeman: Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res. 8, 260–291 (1974)Google Scholar
  7. Coull, B. C.: Shallow water meiobenthos of the Bermuda Platform. Oecologia 4, 325–357 (1970)Google Scholar
  8. Dauer, D. M., R. M. Ewing, G. H. Tourtellotte, T. W. Harlan, J. W. Sourbeer and H. R. Barker, Jr.: Predation, resource limitation and the structure of benthic infaunal communities of the lower Chesapeake Bay. Int. Revue ges. Hydrobiol. Hydrogr. 67, 477–489 (1982)Google Scholar
  9. Ehrlich, H. L.: Geomicrobiology, 393 pp. New York: M. Dekker, Inc. 1981Google Scholar
  10. Fenchel, T. M. and B. B. Jørgensen: Detritus food chains of aquatic ecosystems: the role of bacteria. In: Advances in microbial ecology, pp 1–58. Ed. by M. Alexander, New York: Plenum Press 1977Google Scholar
  11. Findlay, R. H. and D. C. White: In situ determination of metabolic activity in aquatic environments. Microbiol. Sci. 1, 90–95 (1984)Google Scholar
  12. Findlay, S. E. G.: Small-scale spatial distribution of meiofauna on a mud- and sandflat. Estuar. cstl Shelf Sci. 12, 471–484 (1981)Google Scholar
  13. Gerlach, S. A.: Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33, 55–69 (1978)Google Scholar
  14. Gray, J. S.: The attractive factor of intertidal sands to Protodrilus symbioticus Giard. J. mar. biol. Ass. U.K. 46, 627–645 (1966)Google Scholar
  15. Gray, J. S.: Substrate selection by the archiannelid Protodrilus hypoleucus Armenante. J. exp. mar. Biol. Ecol. 1, 47–54 (1967)Google Scholar
  16. Gray, J. S.: An experimental approach to the ecology of the harpacticoid Leptastacus constrictus Lang. J. exp. mar. Biol. Ecol. 2, 278–292 (1968)Google Scholar
  17. Gray, J. S. and R. M. Johnson: The bacteria of a sandy beach as an ecological factor affecting the interstitial gastrotrich Turbanella hyalina Schultze. J. exp. mar. Biol. Ecol. 4, 119–133 (1970)Google Scholar
  18. Gray, J. S. and R. Rieger: A quantitative study of the meiofauna of an exposed sandy beach at Robin Hoods Bay, Yorkshire. J. mar. biol. Ass. U.K. 51, 1–19 (1971)Google Scholar
  19. Heip, C.: The spatial pattern of Cyprideis torosa (Jones, 1850) (Crustacea: Ostracoda). J. mar. biol. Ass. U.K. 56, 179–189 (1976)Google Scholar
  20. Hicks, G. R. F. and B. C. Coull: The ecology of marine meiobenthic harpacticoid copepods. Oceanogr. mar. Biol. Ann. Rev. 21, 67–175 (1983)Google Scholar
  21. Hollander, M. and D. A. Wolfe: Nonparametric statistical methods, 503 pp. New York: John Wiley and Sons 1973Google Scholar
  22. Jannasch, H. W. and G. E. Jones: Bacterial populations in seawater as determined by different methods of enumeration. Limnol. Oceanogr. 4, 129–139 (1959)Google Scholar
  23. Jansson, B. O.: Microdistribution of factors and fauna in marine sandy beaches. Veröff. Inst. Meeresforsch. Bremerh. (Sonderbd) 2, 77–86 (1966)Google Scholar
  24. Jansson, B. O.: The significance of grain size and pore water content for the interstitial fauna of sandy beaches. Oikos 18, 311–322 (1967)Google Scholar
  25. Joint, I. R.: Microbial production of an estuarine mudflat. Estuar. cstl mar. Sci. 7, 185–195 (1978)Google Scholar
  26. Lee, J. J., J. H. Tietjen, C. Mastropaolo and H. Rubin: Food quality and the heterogeneous spatial distribution of meiofauna. Halgoländer wiss. Meeresunters. 30, 272–282 (1977)Google Scholar
  27. McLachlan, A., P. E. D. Winter and L. Botha: Vertical and horizontal distribution of sub-littoral meiofauna in Algoa Bay, South Africa. Mar. Biol. 40, 355–364 (1977)Google Scholar
  28. Montagna, P. A.: In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Mar. Ecol. Prog. Ser. 18, 119–130 (1984)Google Scholar
  29. Montagna, P. A., B. C. Coull, T. L. Herring and B. W. Dudley: The relationship between abundances of meiofauna and their suspected microbial food (diatoms and bacteria). Estuar. cstl Shelf Sci. 17, 381–394 (1983)Google Scholar
  30. Munro, A. L. S. and T. D. Brock: Distinction between bacterial and algal utilization of soluble substances in the sea. J. gen. Microbiol. 51, 35–42 (1968)Google Scholar
  31. Ravenel, W. S. and D. Thistle: The effect of sediment characteristics on the distribution of two subtidal harpacticoid copepod species. J. exp. mar. Biol. Ecol. 50, 289–301 (1981)Google Scholar
  32. Revsbech, N. P., B. B. Jorgensen and O. Brix: Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 fixation, and oxygen exchange methods. Limnol. Oceanogr. 26, 717–730 (1981)Google Scholar
  33. Rieper, M.: Feeding preferences of marine harpacticoid copepods for various species of bacteria. Mar. Ecol. Prog. Ser. 7, 303–307 (1982)Google Scholar
  34. Riley, J. P.: Introduction to marine chemistry, 465 pp. New York: Academic Press 1971Google Scholar
  35. Sellner, B. W.: Survival and metabolism of the harpacticoid copepod Thompsonula hyaenae (Thompson) fed different diatoms. Hydrobiologia 50, 233–238 (1976)Google Scholar
  36. Steemann Nielsen, E.: The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer. 18, 117–140 (1952)Google Scholar
  37. Thistle, D.: Harpacticoid dispersion patterns: implications for deep-sea diversity maintenance. J. mar. Res. 36, 377–397 (1978)Google Scholar
  38. Thistle, D., J. A. Reidenauer, R. H. Findlay and R. Waldo: An experimental investigation of enhanced harpacticoid (Copepoda) abundances around isolated seagrass shoots. Oecologia 63, 295–299 (1984)Google Scholar
  39. Tietjen, J. H.: Population distribution and structure of the freeliving nematodes of Long Island Sound. Mar. Biol. 43, 123–136 (1977)Google Scholar
  40. Ustach, J. F.: Algae, bacteria and detritus as food for the harpacticoid copepod, Heteropsyllus pseudonunni Coull and Palmer. J. exp. mar. Biol. Ecol. 64, 203–214 (1982)Google Scholar
  41. Vanden Berghe, W. and M. Bergmans: Differential food preferences in three co-occurring species of Tisbe (Copepoda, Harpacticoida). Mar. Ecol. Prog. Ser. 4, 213–219 (1981)Google Scholar
  42. Van Raalte, C., W. C. Stewart and I. Valiela: A 14C technique for measuring algal productivity in salt marsh muds. Bot. mar. 17, 186–188 (1974)Google Scholar
  43. White, D. C., R. J. Bobbie, J. S. Herron, J. D. King and S. J. Morrison: Biochemical measurements of microbial mass and activity from environmental samples, pp 69–81. American Society for Testing and Materials, Publication 695, 1979Google Scholar
  44. Wieser, W.: Benthic studies in Buzzards Bay II: the meiofauna. Limnol. Oceanogr. 5, 121–137 (1960)Google Scholar
  45. Wright, R. T. and J. E. Hobbie: Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47, 447–464 (1966)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. R. Carman
    • 1
  • D. Thistle
    • 1
  1. 1.Department of OceanographyFlorida State UniversityTallahasseeUSA

Personalised recommendations