Marine Biology

, Volume 64, Issue 2, pp 141–152 | Cite as

Color patterns of the shrimps Heptacarpus pictus and H. paludicola (Caridea: Hippolytidae)

  • R. T. Bauer


Color patterns of the shallow-water shrimps Heptacarpus pictus and H. paludicola are formed by chromatosomes (usually termed chromatophores) located beneath the translucent exoskeleton. Development of color patterns is related to size (age) and sex. The color expressed is determined by the chromatosome pigment dispersion, arrangement, and density. In populations with well-developed coloration (H. pictus from Cayucos, California, 1976–1978, H. paludicola from Argyle Channel, San Juan Island, Washington, June–July, 1978), prominent coloration was a characteristic of maturing females, breeding females, and some of the larger males. In the Morro Bay, California, population of H. paludicola (sampled 1976–1978), color patterns were poorly developed except in a few large females. In both species, most shrimp lose color at night because of pigment retraction in certain chromatosomes. In both species, there are 5 basic morphs: 1 transparent and 4 colored morphs. In the colored morphs, the color patterns are composed of bands, stripes, and spots which appear to disrupt the body outline. Each color morph also has a common environmental color in its color pattern, e.g the green of green algae, the whites and pinks of dead and living coralline algae, and various shades of tidepool litter. These shrimps are apparently under heavy predation pressure by fish, and it is suggested that the color patterns are camouflage against such visually-hunting predators.


Color Green Alga Predation Pressure Color Pattern Large Male 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bauer, R. T.: Mating behaviour and spermatophore transfer in the shrimp Heptacarpus pictus (Stimpson) (Decapoda: Caridea: Hippolytidae). J. nat. Hist. 10, 415–440 (1976)Google Scholar
  2. Bauer, R. T.: Antifouling adaptations of marine shrimp (Decapoda: Caridea): gill cleaning mechanisms and grooming of brooded embryos. Zool. J. Linn. Soc. 65, 281–303 (1979a)Google Scholar
  3. Bauer, R. T.: Sex attraction and recognition in the caridean shrimp Heptacarpus paludicola Holmes (Decapoda: Hippolytidae). Mar. Behav. Physiol.6, 157–174 (1979b)Google Scholar
  4. Brown, F. A., Jr.: The chemical nature of the pigments and the transformations responsible for color changes in Palaemonetes. Biol. Bull. mar. biol. Lab., Woods Hole 67, 365–380 (1934)Google Scholar
  5. Brown, F. A., Jr.: Color changes in Palaemonetes. J. Morph. 57, 317–334 (1935)Google Scholar
  6. Bruce, A. J.: Coral reef shrimps and their colour patterns. Endeavour 34, 23–27 (1975)Google Scholar
  7. Bruce, A. J.: Shrimps and prawns of coral reefs, with special reference to commensalism. In: Biology and geology of coral reefs. Vol. III. Biology 2, pp 38–94. Ed. by O. A. Jones and R. Endean. New York: Academic Press 1976Google Scholar
  8. Busnel, R. G. et A. Drilhoun: Sur les pigments flaviniques et ptérinques des crustacés. Bull. Soc. zool. Fr. 73, 141–185 (1948)Google Scholar
  9. Carlisle, D. B.: Local variations in the colour patterns of the prawn Leander serratus (Pennant). J. mar. biol. Ass. U.K. 34, 559–563 (1955)Google Scholar
  10. Carlisle, D. B. and F. G. W. Knowles: Endocrine control in crustaceans, 120 pp. Cambridge: University Press 1959Google Scholar
  11. Chassard, C.: Polymorphisme des populations d'Hippolyte varians Leach et comportement en fonction de leur adaptation chromatique presénte. Bull. Soc. zool. Fr. 81, 413–418 (1956)Google Scholar
  12. Chassard-Bouchaud, C.: L'adaptation chromatique chez la Natantia (crustacés decapodes). Cah. Biol. mar. 6, 469–576 (1965)Google Scholar
  13. Cott, H. B.: Adaptive coloration in animals, 508 pp. London: Methuen 1957Google Scholar
  14. Edmunds, M.: Defence in animals: a survey of ani-predator devices, 357 pp. Burnt Mills, England: Longman 1974Google Scholar
  15. Elofsson, R. and T. Kauri: The ultrastructure of the chromatophores of Crangon and Pandalus (Crustacea) J. Ultrastruct. Res.36, 263–270 (1971)Google Scholar
  16. Gamble, F. W. and F. K. Keeble: Hippolyte varians: a study in color change. Jl microsc. Sci. 43, 589–698 (1900)Google Scholar
  17. Holmes, R. T., J. C. Schultz and P. Nothnagle: Bird predation on forest insects: an enclosure experiment. Science, N.Y. 206, 462–463 (1979)Google Scholar
  18. Keeble, F. and F. W. Gamble: The color physiology of Hippolyte varians. Proc. R. Soc. (Ser. B) 65, 461–468 (1900)Google Scholar
  19. Keeble, F. and F. W. Gamble: The colour physiology of higher Crustacea. Phil. Trans. Soc. (Ser.B) 196, 295–388 (1904)Google Scholar
  20. Kuris, A. and J. T. Carlton: Description of a new species, Crangon handi, and new genus, Lissocrangon of crangonid shrimps (Crustacea: Caridae) from the California coast, with notes on adaptation in body shape and coloration. Biol. Bull. mar. biol. Lab., Woods Hole 153, 540–559 (1977)Google Scholar
  21. Lee, W.: Pigmentation of the marine isopod Idothea montereyensis. Comp. Biochem. Physiol. 18, 17–36 (1966a)Google Scholar
  22. Lee, W.: Color change and the ecology of the marine isopod Idothea (Penidothea) montereyensis Maloney, 1913. Ecology 47, 930–941 (1966b)Google Scholar
  23. Lee, W.: Chromatophores and their role in color change in the marine isopod Idothea montereyensis (Maloney). J. exp. mar. Biol. Ecol. 8, 201–215 (1972)Google Scholar
  24. Mitchell, D. F.: An analysis of stomach contents of California tidepool fishes. Am. Midl. Nat. 49, 862–871 (1953)Google Scholar
  25. Nagano, T.: Physiological studies on the pigmentary system of Crustacea. I. The color change of a shrimp Paratya compressa (De Haan). Sci. Rep. Tôhoku Univ. (Ser. 4) 18, 223–245 (1943)Google Scholar
  26. Perkins, E. B.: Color changes in crustaceans, especially in Palaemonetes. J. exp. Zool. 50, 71–105 (1928)Google Scholar
  27. Potts, E. A.: The fauna associated with the crinoids of a tropical reef. Pap. Dep. mar. Biol. Carnegie Instn Wash. 8, 73–96 (1951)Google Scholar
  28. Robinson, M. H.: Defenses against visually hunting predators. In: Evolutionary biology, Vol. 3. pp 225–259. Ed. by T. Dobzhansky, M. K. Hecht and W. C. Steere. New York: Meredith Corporation 1969Google Scholar
  29. Wear, R. G. and L. B. Holthuis: A new record for the anchialine shrimp Ligur uveae (Borradile, 1899) (Decapoda, Hippolytidae) in the Philippines, with notes on its morphology, behaviour, and ecology. Zoöl. Meded., Leiden 51, 125–140 (1977)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. T. Bauer
    • 1
  1. 1.Department of Invertebrate ZoologyNational Museum of Natural History, Smithsonian InstitutionWashington, D.C.USA

Personalised recommendations