Advertisement

Marine Biology

, Volume 65, Issue 1, pp 25–33 | Cite as

Carbon metabolism and strobilation in Cassiopea andromedea (Cnidaria: Scyphozoa): Significance of endosymbiotic dinoflagellates

  • D. K. Hofmann
  • B. P. Kremer
Article

Abstract

Scyphopolyps and scyphomedusae of Cassiopea andromeda Forskål (Cnidaria, Scyphozoa) containing dinoflagellate endosymbionts (zooxanthellae) were investigated for rates and pathways of carbon fixation. Photosynthesis by the algae, accounting for 80 and 15 μmol C h-1 on a dry weight basis in medusae and polyps, respectively, by far exceeds dark incorporation of inorganic carbon by the intact association. Photosynthetic carbon fixation is operated via C3 pathway of carbon reduction. DCMU-treatment (1×10-6 M and 1×10-5 M) completely inhibits light-dependent carbon assimilation. Major photosynthates presumably involved in a metabolite flow from algal symbionts to animal tissue are glycerol and glucose. A total of 5–10% net algal photosynthate appears to be seleased in vivo to the host. This is probably less than the energy supply ultimately required for the nutrition of the polyps and medusae. The presence of zooxanthellae proved to be indispensable for strobilation in the scyphopolyps. However, photosynthesis by algal symbionts as well as photosynthate release is obviously not essential for the initiation of ephyrae as is shown by DCMU-treatment, culture in continous darkness, and aposymbiotic controls. It is therefore concluded that strobilation is supported, but not triggered by algal photosynthetic activity. The induction of strobilation thus seems to depend on a more complex system of regulation.

Keywords

Assimilation Photosynthesis Dinoflagellate Carbon Fixation Carbon Assimilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Balderston, W. L. and G. Claus: A study of the symbiotic relationship between Symbiodinium microadriaticum Freudenthal, a zooxanthella, and the upside down jellyfish Cassiopeia spec. Nova Hedwigia 17, 373–382 (1969)Google Scholar
  2. Blanquet, R. S., J. C. Nevenzel, and A. A. Benson: Acetate incorporation into the lipids of the anemone Anthopleura elegantissima and its associated zooxanthellae. Mar. Biol. 54, 185–194 (1979)Google Scholar
  3. Drew, E. A.: The biology and physiology of alga-invertebrate symbiosis. I. Carbon fixation in Cassiopea sp. at Aldabra atoll. J. exp. mar. Biol. Ecol. 9, 65–69 (1972)Google Scholar
  4. Hofmann, D. K., R. Neumann, and K. Henne: Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar. Biol. 47, 161–176 (1978)Google Scholar
  5. Kremer, B. P.: Determination of photosynthetic rates and 14C photoassimilatory products of brown seaweed. In: Handbook of phycological methods. Vol. 2 pp 269–283. Ed. by J. A. Hellebust and J. S. Craigie. Cambridge: Cambridge University Press 1978Google Scholar
  6. Kremer, B. P.: Carbon metabolism of endosymbiotic algae. In: Endocytobiology. Endosymbiosis and cell biology, pp 89–96. Ed. by W. Schwemmler and H. E. A. Schenk, Berlin: Walter de Gruyter 1980aGoogle Scholar
  7. Kremer, B. P.: Taxonomic implications of algal photoassimilate patterns. Br. phycol. J. 15, 399–409 (1980 b)Google Scholar
  8. Kremer, B. P.: Dark reactions of photosynthesis. Bull. Fish. Aquat. Sci. (In press)Google Scholar
  9. Kremer, B. P., R. Schmaljohann, and R. Röttger: Features and nutritional significance of photosynthates produced by unicellular algae symbiotic with larger Foraminifera. Mar. Ecol. Prog. Ser. 2, 225–228 (1980)Google Scholar
  10. Lewis, D. H. and D. C. Smith: The autotrophic nutrition of symbiontic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proc. R. Soc. London B178: 111–129 (1971)Google Scholar
  11. Lobban, C. S.: A simple rapid method of solubilizing algal tissue for scintillation counting. Limnol. Oceanogr. 19, 356–359 (1974)Google Scholar
  12. Ludwig, F.-D.: Die Zooxanthellen bei Cassiopea andromeda Eschscholtz 1829 (Polyp-Stadium) und ihre Bedeutung für die Strobilation. Zool. Jb. (Abt. Anat. Ontog. Tiere). 86, 238–277 (1969)Google Scholar
  13. Muscatine, L. and E. Cernichiari: Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole 137, 506–523 (1969)Google Scholar
  14. Muscatine, L., R. R. Pool and E. Cernichiari: Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar. Biol. 13, 298–308 (1972)Google Scholar
  15. Patton, J. S., S. Abraham, and A. A. Benson: Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar. Biol. 44, 235–247 (1977)Google Scholar
  16. Rahat, M. and O. Adar: Effect of symbiotic zooxanthellae and temperature on budding and strobilation in Cassiopeia andromeda Eschscholtz. Biol. Bull., mar. biol. Lab., Woods Hole 159, 394–401 (1980)Google Scholar
  17. Schmitz, K. and B. P. Kremer: Carbon fixation and analysis of assimilates in a coral-dinoflagellate symbiosis. Mar. Biol. 42, 305–313 (1977)Google Scholar
  18. Schoenberg, D. A. and R. K. Trench: Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freundenthal, and specifity in its symbiosis with marine invertebrates. II. Morphological variation in Symbiodinium microadriaticum. Proc. R. Soc. London B207, 429–444 (1980)Google Scholar
  19. Sugiura, Y.: On the life-history of rhizostome medusae. II. Indispensability of zooxanthellae for strobilation in Mastigias papua. Embryologia 8, 223–233 (1964)Google Scholar
  20. Taylor, D. L.: On the regulation and maintenance of algal numbers in zooxanthellae-coelenterate symbiosis with a note on the nutritional relationship in Anemonia sulcata. J. mar. biol. Ass. U. K. 49, 1057–1065 (1969)Google Scholar
  21. Taylor, D. L.: Algal symbionts of invertebrates. Ann. Rev. Microbiol. 27, 171–187 (1973)Google Scholar
  22. Trench, R. K.: The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. Assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc. R. Soc. B177, 225–235 (1971)Google Scholar
  23. Trench, R. K.: Nutritional potentials in Zoanthus sociatus (Coelenterata, Anthozoa). Helgoländer wiss. Meeresunters. 26, 174–216 (1974)Google Scholar
  24. Trench, R. K.. The cell biology of plant-animal symbiosis. Ann. Rev. Plant Physiol 30, 485–531 (1979)Google Scholar
  25. Wilde, E. W. and C. B. Fliermans: Fluorescence microscopy for algal studies. Trans. Amer. Microsc. Soc. 98, 96–102 (1979)Google Scholar
  26. Williamson, C. E.: Fluorescence identification of zoochlorellae: a rapid method for investigating alga-invertebrate symbioses. J. exp. Zool. 202, 187–194 (1977)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • D. K. Hofmann
    • 1
  • B. P. Kremer
    • 2
  1. 1.Lehrstuhl für Spezielle ZoologieRuhr-Universität BochumBochum 1Germany (FRG)
  2. 2.Seminar für Didaktik der BiologieUniversität zu KölnKöln 41Germany (FRG)

Personalised recommendations