Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Substrate catabolism related to reproduction in the bay scallop Argopecten irradians concentricus, as determined by O/N and RQ physiological indexes

  • 158 Accesses

  • 62 Citations

Abstract

Weight specific rates of oxygen consumption carbon dioxide production, and ammonia-N excretion, measured for a Florida population of the bay scallop Argopecten irradians concentricus between May and September, 1982 and October and November, 1983 were significantly correlated (P<0.0005) to environmental factors that co-varied seasonally with metabolic shifts related to reproduction. Mean O/N and CO2/O2 (RQ) molar ratios indicates that scallop energy metabolism varied over the course of the reproductive cycle. Resting stage individuals (May-early June) had RQ values close to 0.7, indicative of a predominantly lipid-based metabolism. During the initial stages of gametogenesis (late June-early July) scallops catabolized primarily carbohydrate, as evidenced by maximum O/N (>22) values and RQ values close to 1.0 RQ values >1.0 indicated a possible carbohydrate to lipid conversion during the period of cytoplasmic growth (late July-early September). As gametes matured and spawning commenced (late September-November), metabolism became primarily protein based, as indicated by O/N and RQ values around 9.0 and 0.8, respectively. This pattern of substrate catabolism supports existing data on the storage and utilization of specific energy reserves with respect to reproduction in this species.

This is a preview of subscription content, log in to check access.

Literature

  1. Ansell, A. D.: Seasonal changes in biochemical composition of the bivalve Chlamys septemradiata from the Clyde Sea Area. Mar. Biol. 25, 85–99 (1974)

  2. Ansell, A. D. and P. Sivadas: Some effects of temperature and starvation on the bivalve Donax vittatus (Da Costa) in experimental laboratory populations. J. exp. mar. Biol. Ecol. 13, 229–262 (1973)

  3. Barber, B. J. and N. J. Blake: Energy storage and utilization in relation to gametogenesis in Argopecten irradians concentricus (Say). J. exp. mar. Biol. Ecol. 52, 121–134 (1981)

  4. Barber, B. J. and N. J. Blake: Growth and reproduction of the bay scallop, Argopecten irradians (Lamarck), at its southern distributional limit. J. exp. mar. Biol. Ecol. 66, 247–256 (1983)

  5. Bayne, B. L.: Physiological changes in Mytilus edulis L. induced by temperature and nutritive stress. J. mar. biol. Ass. U.K. 53, 39–58 (1973a)

  6. Bayne, B. L.: Aspects of the metabolism of Mytilus edulis during starvation. Neth. J. Sea Res. 7, 399–410 (1973b)

  7. Bayne, B. L.: Aspects of reproduction in bivalve molluscs. In: Estuarine processes, Vol. 1. Uses, stresses and adaptation to the estuary, pp 432–448. Ed. by M. L. Wiley New York: Academic Press 1976

  8. Bayne, B. L., C. J. Bayne, T. C. Carefoot and R. J. Thompson: The physiological ecology of Mytilus californianus Conrad 1. Metabolism and energy balance Oecologia (Berl.) 22, 211–228 (1976)

  9. Bayne, B. L., A. Bubel, P. A. Gabbott, D. R., Livingstone, D. M. Lowe and M. N. Moore: Glycogen utilization and gametogenesis in Mytilus edulis L. Mar. Biol. Lett. 3 89–105 (1982)

  10. Bayne, B. L. and C. Scullard: Rates of nitrogen excretion by species of Mytilus (Bivalvia: Mollusca). J. mar. biol. Ass. U.K. 57, 355–369 (1977)

  11. Bayne, B. L. and R. J. Thompson: Some physiological consequences of keeping Mytilus edulis in the laboratory. Helgoländer wiss. Meeresunters. 20, 526–552 (1970)

  12. Bayne, B. L., J. Widdows and R. J. Thompson: Physiological integrations. In: Marine mussels, pp 261–299. Ed. by B. L. Bayne. Cambridge, Cambridge University Press 1976

  13. Bruce, J. R.: The respiratory exchange of the mussel (Mytilus edulis, L.). Biochem. J. 20, 829–846 (1926)

  14. Clark, L. C., R. Wolf, D. Granger and Z. Taylor: Continuous recording of blood oxygen tensions by polarography. J. appl. Physiol. 6, 189–193 (1953)

  15. Comely, C. A.: Seasonal variations in the flesh weights and biochemical content of the scallop Pecten maximus (L.) in the Clyde Sea Area. J. Cons. int. Explor. Mer 35, 281–295 (1974)

  16. Conover, R. J. and E. D. S. Corner: Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. mar. biol. Ass. U.K. 48, 49–75 (1968)

  17. Corner, E. D. S. and C. B. Cowey: Biochemical studies on the production of marine zooplankton. Biol. Rev. 43, 393–426 (1968)

  18. Edmond, J. M.: High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration. Deep-Sea Res. 17, 737–750 (1970)

  19. Gabbott, P. A.: Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In: Proc. 9th Eur. mar. Biol. Symp., pp 191–211. Ed. by H. Barnes. Aberdeen: Aberdeen Univ. Press 1975

  20. Gabbott, P. A.: Energy metabolism. In: Marine mussels, pp 293–355. Ed. by B. L. Bayne. Cambridge: Cambridge University Press 1976

  21. Gabbott, P. A.: Developmental and seasonal metabolic activities in marine molluscs. In: The Mollusca, Vol. 2, pp 165–217. Ed. by P. W. Hochachka. New York: Academic Press 1983

  22. Gabbott, P. A. and B. L. Bayne: Biochemical effects of temperature and nutritive stress on Mytilus edulis L. J. mar. biol. Ass. U. K. 53, 269–286 (1973)

  23. Giese, A. C.: Comparative physiology: annual reproductive cycles of marine invertebrates. A. Rev. Physiol. 21, 547–576 (1959)

  24. Giese, A. C.: A new approach to the biochemical composition of the molluse body. Oceanogr. mar. Biol. A. Rev. 7, 175–229 (1969)

  25. Kruger, F.: Zur Frage der Größenabhängigkeit des Sauerstoffverbrauchs von Mytilus edulis L. Helgoländer wiss. Meeresunters. 7, 125–148 (1969)

  26. Lyman, J.: Changes in pH and total CO2 in natural waters. Limnol. Oceanogr. 6, 80–82 (1961)

  27. Mann, K.: A comparison of morphometric, biochemical, and physiological indexes of condition in marine bivalve molluscs. In: Energy and environmental stress in aquatic systems, pp 484–497. Ed by J. H. Thorp and J. W. Gibbons. US Dept. of Energy, Technical Info. Center (1978)

  28. Mann, R.: Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures J. mar. biol. Ass. U.K. 59, 95–110 (1979)

  29. Mayzaud, P.: Respiration and nitrogen excretion of zooplankton. II. Studies of the metabolic characteristics of starved animals. Mar. Biol. 21, 19–28 (1973)

  30. Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicz: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric, pressure. Limnol. Oceanogr. 18, 897–907 (1973)

  31. Mickel, T. J., L. B. Quetin and J. J. Childress: Construction of a polarographic oxygen sensor in the laboratory. In: Polarographic oxygen sensors, pp 81–85. Ed. by E. Gnaiger, and H. Forstner. Berlin: Springer-Verlag 1983

  32. Mori, K.: Changes of oxygen consumption and respiratory quotient in the tissues of oysters during the stages of sexual maturation and spawning. Tohoku J. agric. Res. 19, 136–143 (1968)

  33. Mori, K.: Seasonal variation in physiological activity of scallops under culture in the coastal waters of Sanriku District, Japan, and a physiological approach of a possible cause of their mass mortality. Bull. mar. biol. Sta. Asamushi 15, 59–79 (1975)

  34. Pollero, R. J., M. E. Re and R. R. Brenner: Seasonal changes of the lipids of the mollusc Chlamys tehuelcha. Comp. Biochem. Physiol. 64A, 257–263 (1979)

  35. Richardson, H. B.: The respiratory quotient. Physiol. Rev. 9, 61–125 (1929)

  36. Riley, J. P. and R. Chester: Introduction to marine chemistry, 465 pp. New York: Academic Press 1971

  37. Robinson, W. E., W. E. Wehling, M. P. Morse and G. C. McLeod: Seasonal changes in soft-body component indices and energy reserves in the Atlantic deep-sea scallop, Placopecten magellanicus. Fish. Bull. U.S. 79, 449–458 (1981)

  38. Sastry, A. N.: Temperature effects in reproduction of the bay scallop, Aequipecten irradians Lamarck. Biol. Bull. mar. biol. Lab., Woods Hole 130, 118–134 (1966)

  39. Sastry, A. N.: The relationships among food, temperature, and gonad development of the bay scallop Aequipecten irradians Lamarck. Physiol. Zool. 41, 44–53 (1968)

  40. Sastry, A. N.: Pelecypoda (excluding Ostreidae). In: Reproduction of marine invertebrates, pp 113–292. Ed. by A. C. Giese and J. S. Pearse. New York: Academic Press 1979

  41. Smith, S. V. and G. S. Key: Carbon dioxide and metabolism in marine environments. Limnol. Oceanogr. 20, 493–495 (1975)

  42. Stickle, W. B. and B. L. Bayne: Effects of temperature and salinity on oxygen consumption and nitrogen excretion in Thais (Nucella) lapillus (L.). J. exp. mar. Biol. Ecol. 58, 1–17 (1982)

  43. Taylor, A. C. and T. J. Venn: Seasonal variation in weight and biochemical composition of the tissues of the queen scallop, Chlamys opercularis, from the Clyde Sea Area J. mar. biol. Ass. U.K. 59, 605–621 (1979)

  44. Thomas, R. F. and R. L. Booth: Selective electrode measurement of ammonia in water and wastes Envir. Sci. Technol. 7, 523–526 (1973)

  45. Vooys, C. G. N., de: The influence of temperature and time of year on the oxygen uptake of the sea mussel Mytilus edulis. Mar. Biol. 36, 25–30 (1976)

  46. Wheeler, A. P., P. L., Blackwelder and K. M. Wilbur: Shell growth in the scallop Argopecten irradians. I. Isotope incorporation with reference to diurnal growth. Biol. Bull. mar. biol. Lab., Woods Hole. 148 472–482 (1975)

  47. Widdows, J.: Combined effects of body size, food concentration and season on the physiology of Mytilus edulis J. mar. biol. Ass. U.K. 58, 109–124 (1978)

Download references

Author information

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barber, B.J., Blake, N.J. Substrate catabolism related to reproduction in the bay scallop Argopecten irradians concentricus, as determined by O/N and RQ physiological indexes. Marine Biology 87, 13–18 (1985). https://doi.org/10.1007/BF00397001

Download citation

Keywords

  • Carbohydrate
  • Carbon Dioxide
  • Specific Energy
  • Specific Rate
  • Reproductive Cycle