Marine Biology

, Volume 71, Issue 1, pp 23–31

Effects of age and food availability on diel vertical migration of Calanus pacificus

  • M. Huntley
  • E. R. Brooks
Article
  • 238 Downloads

Abstract

Age-specific differences in diel vertical migration behavior of Calanus pacificus were investigated in a 58 d (30 April–26 June, 1981) experiment in the Scripps Institution of Oceanography Deep Tank, La Jolla, California, USA; the experiment spanned three successive generations of copepods. The onset of vertical migration behavior occurred in the first feeding stage, Nauplius III. The amplitude of vertical migration gradually increased with age, becoming maximal in the late copepodite stages. Night depths remained constant with age while daytime depths increased. The migratory behavior of late copepodite stages was influenced by food availability. When phytoplankton was abundant and individual ingestion rates were high, copepodites performed high-amplitude migrations. As food availability declined, however, and the competition for food increased, migration amplitudes decreased and then ceased altogether so that copepodites remained in the relatively food-rich surface waters at all times. We suggest that hunger is the primary factor controlling vertical migration behavior.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Balch, N., C. M. Boyd and M. M. Mullin: Large-scale tower tank systems. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 173, 13–21 (1978)Google Scholar
  2. Bohrer, R.: Experimental studies on vertical migration. In: Evolution and ecology of zooplankton communities, pp 111–121. Ed. by W. Kerfoot. Hanover, New Hampshire: University Press of New England 1980Google Scholar
  3. Boyd, C. M., S. L. Smith and T. J. Cowles Grazing patterns of copepods in the upwelling system off Peru. Limnol. Oceanogr. 25, 583–596 (1981)Google Scholar
  4. Bigelow, H. B.: Plankton of the offshore waters of the Gulf of Maine. Bull. Bur. Fish., Wash. 60, 1–509 (1926)Google Scholar
  5. Brook, G.: Report on the herring fishery of Loch Fyne and the adjacent districts during 1885. Rep. Fishery Bd Scotl. 4, 47–61 (1886)Google Scholar
  6. Clarke, G. L.: Diurnal migration of plankton in the Gulf of Maine and its correlation with changes in submarine irradiation. Biol. Bull. mar. biol. Lab., Woods Hole 65, 402–436 (1933)Google Scholar
  7. Clarke, G. L.: Further observations on the diurnal migration of copepods in the Gulf of Maine. Biol. Bull. mar. biol. Lab., Woods Hole 67, 432–455 (1934)Google Scholar
  8. Cuvier, Le Baron: La règne animale, The animal kingdom, Vol. 13. 540 pp. London: Whittaker, Teacher & Co. 1834Google Scholar
  9. Elster, H. J.: Über die Populationsdynamik von Eudiaptomus gracilis Sars und Heterocope borealis Fischer im Bodensee-Obersee. Arch. Hydrobiol. (Beih. Falkau-Arb.) 20, 546–614 (1954)Google Scholar
  10. Enright, J. T. and W. M. Hamner: Vertical diurnal migration and endogenous rhythmicity. Science, N.Y. 157, 937–941 (1967)Google Scholar
  11. Enright, J. T. and H.-W. Honegger: Diurnal vertical migration: adaptive significance and timing. Part 2. Test of the model: details of timing. Limnol. Oceanogr. 22, 873–886 (1977)Google Scholar
  12. Eppley, R. W., R. W. Holmes and J. D. H. Strickland: Sinking rates of marine phytoplankton measured with a fluorometer. J. exp. mar. Biol. Ecol. 1, 191–208 (1967)Google Scholar
  13. Esterly, C. O.: Diurnal migrations of Calanus finmarchicus in the San Diego region during 1909. Int. Revue ges. Hydrobiol. Hydrogr. 4, 140–151 (1911)Google Scholar
  14. Esterly, C. O.: The occurrence and vertical distribution of the Copepoda of the San Diego region. Univ. Calif. Publs Zool. 16, 381–392 (1912)Google Scholar
  15. Esterly, C. O.: Reactions of various plankton animals with reference to their diurnal migrations. Univ. Calif. Publs Zool. 19, 1–83 (1919)Google Scholar
  16. Farran, G. P.: Vertical distribution of plankton (Sagitta, Calanus, and Metridia) off the south coast of Ireland. Proc. R. Ir. Acad. 51, 121–136 (1947)Google Scholar
  17. Gardiner, A. C.: Vertical distribution in Calanus finmarchicus. J. mar. biol. Ass. U.K. 18, 575–610 (1933)Google Scholar
  18. Hardy, A. C.: The open sea, 335 pp London: Collins 1956Google Scholar
  19. Hardy, A. C. and E. R. Gunther: The plankton of the South Georgia whaling ground and adjacent waters, 1926–27. ‘Discovery’ Rep. 11, 1–456 (1936)Google Scholar
  20. Hardy, A. C. and W. N. Paton: Experiments on the vertical migration of plankton animals. J. mar. biol. Ass. U.K. 26, 467–526 (1947)Google Scholar
  21. Harris, J. E.: The role of endogenous rhythms in vertical migration. J. mar. biol. Ass. U.K. 43, 153–166 (1963)Google Scholar
  22. Kikuchi, K.: Studies on the vertical distribution of the plankton crustacea I. A comparison of the vertical distribution of the plankton crustacea in six lakes of middle Japan in relation to the underwater illumination and temperature. Rec. oceanogr. Wks Japan 9, 63–85 (1937)Google Scholar
  23. Langford, R. R.: Diurnal and seasonal changes in the distribution of limnetic crustacea of Lake Nipissing Ontario. Univ. Toronto Stud. biol. Ser. 45, 1–42 (1938)Google Scholar
  24. Manteufel, B. P.: Vertical migration of sea organisms. [In Russ.] Trudy Inst. Morf. Zhivot. 13, 62–117 (1959)Google Scholar
  25. Marshall, S. M. and A. P. Orr: The relation of the plankton to some chemical and physical factors in the Clyde Sea area. J. mar. biol. Ass. U.K. 14, 837–868 (1927)Google Scholar
  26. Marshall, S. M. and A. P. Orr: The biology of a marine copepod, 195 pp. Edinburgh: Oliver & Boyd 1955Google Scholar
  27. Nicholls, A. G.: On the biology of Calanus finmarchicus. III. Vertical distribution and diurnal migration in the Clyde Sea area. J. mar. biol. Ass. U.K. 19, 139–164 (1933)Google Scholar
  28. Pearre, S., Jr.: Vertical migration and feeding in Sagitta elegans Verrill. Ecology 54, 300–314 (1973)Google Scholar
  29. Rice, A. L.: Responses of Calanus finmarchicus (Gunnerus) to changes in hydrostatic pressure. Nature, Lond. 194, 1189–1190 (1962)Google Scholar
  30. Ringelberg, J.: The positively phototactic reaction of Daphnia magna Straus. Neth. J. Sea Res. 2, 319–406 (1964)Google Scholar
  31. Rudjakov, J. A.: The possible causes of diel vertical migrations of planktonic animals. Mar. Biol. 6, 98–105 (1970)Google Scholar
  32. Russell, F. S.: The vertical distribution of plankton in the sea. Biol. Rev. 2, 213–262 (1927)Google Scholar
  33. Russell, F. S.: The vertical distribution of marine macroplankton. VII. Observations on the behavior of Calanus finmarchicus. J. mar. biol. Ass. U.K. 15, 429–454 (1928)Google Scholar
  34. Russell, F. S.: The vertical distribution of marine macroplankton. XII. Some observations on the vertical distribution of Calanus finmarchicus in relation to light intensity. J. mar. biol. Ass. U.K. 19, 569–584 (1934)Google Scholar
  35. Shuman, F. R. and C. J. Lorenzen: Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20, 580–586 (1975)Google Scholar
  36. Singarajh, K. V., J. Moyse and E. W. Knight-Jones: The effect of feeding upon the phototactic behavior of cirripede nauplii. J. exp. mar. Biol. Ecol. 1, 144–153 (1967)Google Scholar
  37. Steele, J. H., D. M. Farmer and E. W. Henderson: Circulation and temperature structure in large enclosures. J. Fish. Res. Bd Can. 34, 1095–1104 (1977)Google Scholar
  38. Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can. 167, 1–310 (1972)Google Scholar
  39. Vinogradov, M. E.: Vertical distribution of the oceanic zooplankton, 339 pp. Jerusalem: Keter 1970. (Israel Program for Scintific Translations)Google Scholar
  40. Weissmann, A.: Das Tierleben im Bodensee. Schr. Gesch. Bodensees u. Umgebung 7, 1–31 (1877)Google Scholar
  41. Zaret, T. M. and J. S. Suffern: Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21, 804–813 (1976)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Huntley
    • 1
  • E. R. Brooks
    • 1
  1. 1.Institute of Marine Resources, A-018University of California, San DiegoLa JollaUSA

Personalised recommendations