Marine Biology

, Volume 69, Issue 1, pp 79–89 | Cite as

Autecology and clonal variability of the marine centric diatom Thalassiosira rotula (Bacillariophyceae) in response to light, temperature and salinity

  • Richard W. Krawiec
Article

Abstract

The influence of 49 combinations of salinity (10–40‰ S, at 5‰ S intervals) and temperature (0°–30°C, at 5C° intervals) on the maximum daily division rate (K) and 18 combinations of light intensity (six levels) and temperature (5°, 15°, and 25°C) on photosynthesis, cell division, and chlorophyll a was examined using two clones of Thalassiosira rotula Meunier isolated from the upwelling area of Baja California (clone C8) and from Narragansett Bay, Rhode Islands (clone A8). Physiological differences appear to characterize these to clones with regard to their temperature tolerance (C8 5°–30°C, A8 0°–25°C), maximum growth rate (C8 K=2.9, A8 K=2.4), chlorophyll a content, and in the rates of growth and photosynthesis in response to light intensity and temperature. Optimum salinity for both clones (25–30‰ S) was generally independent of temperature, while chlorophyll a content decreased with temperature. T. rotula is a cosmopolitan paractic species; experimental studies indicate that it is eurythermal and moderately euryhaline. Comparison of five additional Narragansett Bay isolates of T. rotula reveal minimal spacial or temporal variability in genetically determined physiological characteristics within this local population.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Antónia, M. de M. S.: Diatomaceás do Estuario do Sado. Estudo qualitativo e quantitativo: variacões sazonias. Notas e Estudos Inst. Biol. Marit. 39, 1–99 (1970)Google Scholar
  2. Brockmann, U. H., K. Eberlein, G. Hentzschel, H. K. Schöne, D. Siebers, K. Wandschneider and A. Weber: Parallel plastic tank experiments with cultures of marine diatoms. Helgol. wiss. Meeresunters. 30, 201–216 (1977a)Google Scholar
  3. Brockmann, U. H., K. Eberlein, P. Hosumbek, H. Trageser, E. Maier-Reimer, H. K. Schöne and H. D. Junge: The development of a natural plankton population in an outdoor tank with nutrient-poor sea water. I. Phytoplankton succession. Mar. Biol. 43, 1–17 (1977b)Google Scholar
  4. Bunt, J. S.: Some characteristics of microalgae isolated from Antarctic Sea ice. Ant. Res. Ser. 11, 1–14 (1968)Google Scholar
  5. Bursa, A.: Phytoplankton of the Calanus expedition in Hudson Bay, 1953 and 1954. J. Fish. Res. Bd Can. 18, 51–83 (1961a)Google Scholar
  6. Bursa, A.: The annual oceanographic cycle at Igloolik in the Canadian Arctic. II. The phytoplankton. J. Fish. Res. Bd Can. 18, 563–615 (1961b)Google Scholar
  7. Carpenter, E. J.: Annual phytoplankton cycle of the Cape Fear River Estuary, North Carolina. Chesapeake Sci. 12, 95–104 (1971)Google Scholar
  8. Carpenter, E. J. and R. R. L. Guillard: Intra-specific differences in nitrate half-saturation constants for three species of marine phytoplankton. Ecology 52, 183–185 (1971)Google Scholar
  9. Cassie, V.: Seasonal changes in diatoms and dinoflagellates of the east coast of New Zealand during 1957 and 1958. N.Z.J. Sci. 3, 137–172 (1960)Google Scholar
  10. Conover, S.: Oceanography of Long Island Sound, 1952–54. IV. Phytoplankton. Bull. Bingham. Ocean. Coll. 15, 62–112 (1956)Google Scholar
  11. Crosby, L. H. and E. J. F. Wood: Studies on Australian and New Zealand diatoms. I. Planktonic and allied species. Trans. R. Soc. N.Z. 85, 483–530 (1958)Google Scholar
  12. Cupp, E. E.: Marine plankton diatoms of the west coast of North America. Bull. Scripps Inst. Oceanogr. 5, 1–238 (1943)Google Scholar
  13. Cupp, E. E. and W. E. Allen: Plankton diatoms of the Gulf of California obtained by the Allan Hancock Pacific Expedition of 1937. Allan Hancock Pac. Exped. 3, 61–85 (1938)Google Scholar
  14. Dakin, W. J. and A. Colefax: The marine plankton of the coastal waters of New South Wales. I. Proc. Linn. Soc. N.S.W. 58, 186–222 (1933)Google Scholar
  15. Dooley, M.: Preliminary investigations on the phytoplankton from the west coast of Ireland. Br. Phycol. J. 8, 79–94 (1973)Google Scholar
  16. Drebes, G.: Marines Phytoplankton, 186 pp. Stuttgart: George Thieme 1974Google Scholar
  17. Duran, M., F. Saiz, M. Lopez-Benito and R. Margalef: El phytoplankton de la ria de Vigo de abril de 1954 a junio de 1955. Invest. Pesq. 4, 67–95 (1956)Google Scholar
  18. Durbin, E. G.: Studies on the autecology of the marine diatom Thalassiosira nordenskiöldii Cleve. I. The influence of daylength, light intensity, and temperature on growth. J. Phycol. 10, 220–225 (1974)Google Scholar
  19. Eppley, R. W. and J. H. Sharp: Photosynthetic measurements in the central North Pacific: the loss of carbon in 24-h incubations. Limnol. Oceanogr. 20, 981–987 (1975)Google Scholar
  20. Eppley, R. W. and P. R. Sloan: Growth rates of marine phytoplankton: correlation with light absorption by cell chlorophyll a. Physiol. Plant. 19, 47–59 (1966)Google Scholar
  21. Gran, H. and T. Thompson: The diatoms and the physical and chemical conditions of the seawater of the San Juan Archipelago. Publ. Puget Sound Biol. St. 7, 169–204 (1930)Google Scholar
  22. Grøntved, J. and G. Seidenfaden: The phytoplankton of the waters west of Greenland, Godthaab Expedition, 1928. Medd. Grønland. 82, 1–380 (1938)Google Scholar
  23. Guillard, R. R. L.: B12 specificity of marine centric diatoms. J. Phycol. 4, 59–64 (1968)Google Scholar
  24. Guillard, R. R. L., P. Kilham and T. A. Jackson: Kinetics of silicon limited growth in the marine diatom Thalassiosira pseudonana Hasle and Heimdal (Cyclotella nana Hustedt). J. Phycol. 9, 233–237 (1973)Google Scholar
  25. Guillard, R. R. L. and J. H. Ryther: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962)PubMedGoogle Scholar
  26. Hargraves, P. E. and R. R. L. Guillard: Structural and physiological observations on some marine diatoms. Phycologia 13, 163–172 (1974)Google Scholar
  27. Hasle, G. R.: The valve processes of the centric diatom genus Thalassiosira. Nytt Mag. Bot. 15, 193–201 (1968)Google Scholar
  28. Hasle, G. R.: The biogeography of some marine planktonic diatoms. Deep-Sea Res. 23, 319–338 (1976)Google Scholar
  29. Hasle, G. R. and G. A. Fryxell: Diatoms: cleaning and mounting for light and electron microscopy. Trans. Am. Microsc. Soc. 89, 469–474 (1970)Google Scholar
  30. Hasle, G. R., B. R. Heimdal and G. A. Fryxell: Morphological variability in fasciculated diatoms as exemplified by Thalassiosira tumida (Janisch) Hasle, comb. nov. Ant. Res. Ser. 17, 313–333 (1971)Google Scholar
  31. Hayward, J.: Studies on the growth of Phaeodactylum tricornutum. IV. Comparison of different isolates. J. mar. biol. Ass. U.K. 48, 657–666 (1968)Google Scholar
  32. Hendy, N. I.: An introductory account of the smaller algae of British coastal waters, Part V; Bacillariophyceae (Diatoms). Her Majesty's Stationery Office, London, 317 pp. 65 plates 1964Google Scholar
  33. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes and J. D. H. Strickland: Fluorometric determination of chlorophyll. J. Cons. int. Explor. Mer 30, 3–15 (1965)Google Scholar
  34. Ignatiades, L. and T. J. Smayda: Autecological studies on the marine diatom Rhizosolenia fragilissima Bergon. I. The influence of light, temperature, and salinity. J. Phycol. 6, 332–339 (1970)Google Scholar
  35. Margalef, R.: Distribución ecológica y geográfica de las especies de fitoplancton marine. Invest. Pesq. 19, 81–101 (1961)Google Scholar
  36. Margalef, R., M. Durán and F. Saiz: El fitoplancton de la ria de Vigo de enero de 1953 a marzo de 1954. Invest. Pesq. 2, 85–129 (1955)Google Scholar
  37. Marshall, H. G.: Plankton in James River Estuary, Virginia. III. Phytoplankton in the Lafayette and Elizabeth Rivers (western and eastern branches). Castanea 33, 225–285 (1968)Google Scholar
  38. Marshall, N. and B. M. Wheeler: Role of coastal and upper estuarine wates contributing phytoplankton to the shoals of the Niantic Estuary. Ecology 46, 665–673 (1965)Google Scholar
  39. Matsudaira, Y.: Cooperative studies on primary production in coastal waters of Japan 1962–63. Inform. Bull. Planktol. Japan 11, 24–73 (1964)Google Scholar
  40. Meunier, A.: Microplankton de Mers de Barents et de Kara. Duc d'Orleans, Camp. Arct. de 1907, 1–355 (1910)Google Scholar
  41. Mulford, R. A.: An annual plankton cycle of the Chesapeake Bay in the vicinity of Calvert Cliffs, Maryland, June 1969-May 1970. Proc. Acad. natl Sci. Philadelphia 24, 17–40 (1972)Google Scholar
  42. Murphy, L. S. and R. R. L. Guillard: Biochemical taxonomy of marine phytoplankton diatoms by electrophoresis of enzymes. I. The centric diatoms Thalassiosira pseudonana and T. fluviatilis. J. Phycol. 12, 9–13 (1976)Google Scholar
  43. Nelson, D. M., J. J. Goering, S. S. Kilham and R. R. L. Guillard: Kinetics of silicic acid uptake and rates of silica dissolution in the marine diatom Thalassiosira pseudonana. J. Phycol. 12, 246–252 (1976)Google Scholar
  44. Ostenfeld, C. H.: Résumé des observations sur le plankton des mers explorées par le conseil pendant années 1902–1908. Cons. int. Explor. Mer 3, 424–426 (1913)Google Scholar
  45. Paasche, E.: Marine plankton algae grown with light dark cycles. I. Coccolithus huxleyi. Physiol. Plant. 20, 946–956 (1967)Google Scholar
  46. Polunin, N.: The flora of Akpatôq Island, Hudson Strait. J. Bot. 72, 197–204 (1935)Google Scholar
  47. Pratt, D. M.: The phytoplankton of Narragansett Bay. Limnol. Oceanogr. 4, 425–438 (1959)Google Scholar
  48. Pratt, D. M.: The winter-spring diatom flowering in Narragansett Bay. Limnol. Oceanogr. 11, 447–450 (1965)Google Scholar
  49. Schöne, H. K.: Experimentelle Untersuchungen zur Ökologie der marinen Kieselalge Thalassiosira rotula. I. Temperatur und Licht. Mar. Biol. 13, 284–291 (1972)Google Scholar
  50. Schöne, H. K.: Experimentelle Untersuchungen zur Ökologie der marinen Kieselalge Thalassiosira rotula. II. Der Einfluß des Salzgehaltes. Mar. Biol. 27, 287–298 (1974)Google Scholar
  51. Silva, E. S.: Plancton de Lagoa de Obidos (III). Abundância, variacões sazonais e grandes (Blooms). Notas Estud. Inst. Biol. Marit. 34, 1–79 (1968)Google Scholar
  52. Smayda, T. J.: Phytoplankton studies in lower Narragansett Bay. Limnol. Oceanogr. 2, 342–359 (1957)Google Scholar
  53. Smayda, T. J.: Biogeographical studies of marine phytoplankton. Oikos 9, 158–191 (1958)Google Scholar
  54. Smayda, T. J.: Experimental observations on the influence of temperature, light, and salinity on cell division of the marine diatom, Detonula confervacea (Cleve) Gran. J. Phycol. 5, 150–157 (1969)Google Scholar
  55. Smayda, T. J.: Net phytoplankton and the greater than 20-micron phytoplankton size fraction in upwelling waters off Baja California. Fish. Bull., U.S. 73, 38–50 (1975)Google Scholar
  56. Steemann-Nielsen, E.: The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. int. Explor. Mer 18, 117–140 (1952)Google Scholar
  57. Syvertsen, E. E.: Thalassiosira rotula and T. gravida: ecology and morphology. Nova Hedwigia Beihefte 54, 99–112 (1977)Google Scholar
  58. Underhill, P. A.: Nitrate uptake kinetics and clonal variability in the neritic diatom Biddulphia aurita. J. Phycol. 13, 170–176 (1977)Google Scholar
  59. Wood, E. J. F.: Studies in microbial evolution of the Australian region. Nova Hedwigia Beihefte 8, 1–548 (1964)Google Scholar
  60. Yamazi, I.: Preliminary check-list of plankton organisms found in Tanabe Bay and its environs. Publ. Seto mar. biol. Lab. 7, 111–163 (1958)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Richard W. Krawiec
    • 1
  1. 1.Department of BotanyUniversity of Rhode IslandKingstonUSA
  2. 2.Biotechnology NewswatchMcGraw-Hill Inc.New YorkUSA

Personalised recommendations