Marine Biology

, Volume 72, Issue 2, pp 157–164 | Cite as

Determination of fine-scale vertical distribution of microbes and meiofauna in an intertidal sediment

  • I. R. Joint
  • J. M. Gee
  • R. M. Warwick


A simple sampling device is described which produces thin (1 mm) sections of sediment cores. The sampler has been tested on fine sand of an intertidal sandflat and used to study the vertical distribution, over part of a tidal cycle in August, 1981, of migrating algae in the surface 20 mm of sand. Two species of Diplonies and one of Navicula showed marked changes in vertical distribution as the sandflat was flooded, but the distribution of bacteria in the sime samples did not show any change with tidal state. Spatial separation of different species of harpacticoid oppepods within the surface 20 mm of sand has also been demonstrated using this sampler, and the results suggest that different species may occupy particular fine-scale spatial niches within the sand column. The depth separation of nematode species was less well defined, except for two species with apparently the same feeding mode which were isolated from one another vertically.


Microbe Vertical Distribution Sediment Core Fine Sand Tidal Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aleem, A. A.: The diatom community inhabiting the mudflats at Whitstable. New Phytol. 49, 174–188 (1950)Google Scholar
  2. Anderson, J. G., P. Boonruang and P. S. Meadows: Interrelation-ships between chlorophylls, carbon, nitrogen and heterotrophic bacteria in an intertidal sediment transect. Mar. Ecol. Prog. Ser. 6, 277–283 (1981)Google Scholar
  3. Anderson, J. G. and P. S. Meadows: Microenvironments in marine sediments. Proc. R. Soc Edinb. 76B, 1–16 (1978)Google Scholar
  4. Boaden, P. J. S. and H. M. Platt: Daily migration patterns in an intertidal meiobenthic community. Thalassia jugosl. 7, 1–12 (1971)Google Scholar
  5. Bodiou, J. Y. et L. Villiers: La prédation de la méiofaune per les formes juvéniles de Deltentosteus quadrimaculatus (Teleostei, Gobiidae). Vie Milieu (Ser. AB) 28, 143–156 (1978)Google Scholar
  6. Cadée, G. C. and J. Hegeman: Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res. 8, 260–291 (1974)Google Scholar
  7. Calvert, S. E.: The mineralogy and geochemistry of near-shore sediments. In: Chemical oceanography, Vol 6. pp 187–280. Ed. by J. P. Riley and R. Chester. London: Academic Press 1976Google Scholar
  8. Dale, N. G.: Bacteria in intertidal sediments: factors related to their distribution. Limnol Oceanogr. 19, 509–518 (1974)Google Scholar
  9. Eaton, J. W. and B. Moss: The estimation of numbers and pigment content in epipelic algal populations. Limnol. Oceanogr. 11, 584–595 (1966)Google Scholar
  10. Fenchel, T. and B. J. Straarup: Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22, 172–182 (1971)Google Scholar
  11. Haardt, H. and G. A. E. Nielsen: Attenuation measurements of monochromatic light in marine sediments. Oceanol. Acta 3, 333–338 (1980)Google Scholar
  12. Harper, M. A.: Migration rhythms of the benthic diatom Pinnularia viridis on pond silt. N. Z. Jl mar. Freshwat. Res. 10, 381–384 (1976)Google Scholar
  13. Hobbie, J. E., R. J. Daley and S. Jasper: Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl. envirl Microbiol. 33, 1225–1228 (1977)Google Scholar
  14. Hopkins, J. T.: A study of the diatoms of the Ouse estuary, Sussex. I. The movement of the mud-flat diatoms in response to some chemical and physical changes. J. mar. biol. Ass. U.K. 43, 653–663 (1963)Google Scholar
  15. Joint, I. R.: Microbial production of an estuarine mudflat. Estuar. cstl mar. Sci. 7, 185–195 (1978)Google Scholar
  16. Marcotte, B. M.: An introduction to the architecture and kinematics of harpactiocid (Copepoda) feeding: Tisbe furcata (Baird, 1837). Mikrofauna Meeresbod. 61, 183–196 (1977)Google Scholar
  17. McIntyre, A. D.: Ecology of marine meiobenthos. Biol. Rev. 44, 245–290 (1969)Google Scholar
  18. McLachlan, A.: Composition, distribution, abundance and biomass of the macrofauna and meiofauna of four sandy beaches. Zoologica african. 12, 279–306 (1977)Google Scholar
  19. Perkins, E. J.: The diurnal rhythm of the littoral diatoms of the river Eden estuary, Fife. J. Ecol. 48, 725–728 (1960)Google Scholar
  20. Round, F. E.: Occurrence and rhythmic behaviour of Tropidoneis lepidoptera in the epilepon of Barnstable Harbor, Massachusetts, USA. Mar. Biol. 54, 215–217 (1979)Google Scholar
  21. Round, F. E. and J. D. Palmer: Persistent vertical-migration rhythms in benthic microflora. II. Field and laboratory studies on diatoms from the banks of the River Avon. J. mar. biol. Ass. U.K. 46, 191–214 (1966)Google Scholar
  22. Scherer, B. and K. Reise: Significant predation on micro-and macrobenthos by the crab Carcinus maenas L. in the Wadden Sea. Kieler Meeresforsch. (Sdhft) 5, 490–500 (1981)Google Scholar
  23. Schwinghamer, P.: Characteristic size distributions of integral benthic communities. Can. J. Fish. aquat. Sciences 38, 1255–1263 (1981)Google Scholar
  24. Steele, J. H. and I. E. Baird: Production ecology of a sandy beach. Limnol. Oceanogr. 13, 14–25 (1968)Google Scholar
  25. Warwick, R. M.: The partitioning of secondary production among species in benthic communities. Neth. J. Sea Res. 16, (In press). (1982)Google Scholar
  26. Wieser, W.: Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark. Zool. (Ser. 2) 4, 439–484 (1953)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • I. R. Joint
    • 1
  • J. M. Gee
    • 1
  • R. M. Warwick
    • 1
  1. 1.Natural Environment Research CouncilInstitute for Marine Environmental ResearchPlymouthEngland

Personalised recommendations