Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interrelationships between sulfate reducing and methane producing bacteria in coastal sediments with intense sulfide production

  • 117 Accesses

  • 25 Citations


Coastal sediments receiving different amounts of organic carbon through sedimentation were investigated with respect to sulfate reduction and methanogenic activity. Sampling was carried out at sediment temperatures of 7° and 15°C. Sulfate-reducing and methanogenic bacteria were found at all depths. Sulfate reduction decreased with depth and the highest sulfide concentrations were found a few centimeters below the sediment surface, up to 15 mM at 15°C and pH 7.1. In the same segments a maximum in the methane concentration was also found, 0.91 mM. The high sulfide concentration inhibited the methane formation from acetate but not from carbon dioxide. In the organic rich sediment sulfate reduction was limited by the diffusion of SO 4 + into the sediment and methane production from acetate by sulfide diffusion out of the sediment. When electron acceptor concentration limits sulfate reduction, thermodynamic calculations show that the utilization of electron donors more reduced than acetate is favored. In the sediment with the high carbon-input, acetate predominated at 15°C whereas in the low carbon-input sediment hardly any short chain organic acids were detected. The possibility of a shift in sulfate reduction from acetate oxidation to acetate production is discussed.

This is a preview of subscription content, log in to check access.

Literature Cited

  1. Abdollahi, H. and D. B. Nedwell: Seasonal temperature as a factor influencing bacterial sulfate reduction in a saltmarsh sediment. Microbial. Ecol. 5, 73–79 (1979)

  2. Abram, J. W. and D. B. Nedwell. Inhibition of methanogenesis by sulphate-reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117, 89–92 (1978a)

  3. Abram, J. W. and D. B. Nedwell. Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic salt-marsh sediment. Arch. Microbiol. 117, 93–97 (1978b)

  4. Allison, L. E. and C. D. Moodie: Chemical and microbiological properties, pp 1381–1387. In: Methods of soil analysis. Ed. by C. A. Black, D. D. Evans, J. L. White, L. E. Ensminger, and E. E. Clark. Madison, Wisconsin: American Society of Agronomy, Inc. 1965

  5. Badziong, W. and R. K. Thauer: Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch.Microbiol. 117, 209–214 (1978)

  6. Badziong, W., R. K. Thauer and J. G. Zeikus: Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as sole energy source. Arch. Microbiol. 116, 41–49 (1978)

  7. Balch, W. E. and R. S. Wolfe: New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. environ. Microbiol. 32, 781–791 (1976)

  8. Banat, I. M., E. B. Lindström, D. B. Nedwell and M. T. Balba: Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt-marsh sediment. Appl. environ. Microbiol. 42, 985–992 (1981)

  9. Barnes, R. O. and E. D. Goldberg: Methane production and consumption in anoxic marine sediments. Geology 4, 297–300 (1976)

  10. Belyaev, S. S. and K. S. Laurinavichus: Microbial formation of methane in marine sediments, pp 327–337. In: Environmental biogeochemistry and geomicrobiology. Ed. by W. E. Krumbein. Ann Arbor: Science 1978

  11. Bernard, B. B.: Methane in marine sediments. Deep-Sea Res. 26, 429–443 (1979)

  12. Brock, T. D. and K. O'Dea: Amorphous ferros sulfide as a reducing agent for culture of anaerobes. Appl. environ. Microbiol. 33, 254–256 (1977)

  13. Bryant, M. B., L. L. Campbell, C. A. Reddy and M. R. Crabill; Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. environ. Microbiol. 33, 1162–1169 (1977)

  14. Cappenberg, Th. E.: Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek 40, 285–295 (1974)

  15. Cappenberg, Th. E.: A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria. Microb. Ecol. 2, 60–72 (1975)

  16. Dahlbäck, B. and L. Å. H. Gunnarsson: Sedimentation and sulfate reduction under a mussel culture. Mar. Biol. 63, 269–275 (1981)

  17. Dorsey, T. E., P. W. McDonald and O. A. Roels: A heated biuret-Folin protein assay which gives equal absorbance with different proteins. Anal. Biochem. 78, 156–164 (1977)

  18. Flett, R. J., R. D. Hamilton and N. E. R. Campbell: Aquatic acetylene-reduction techniques: solutions to several problems. Can. J. Microbiol. 22, 43–51 (1976)

  19. Goldhaber, M. B. and I. R. Kaplan: Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci. 119, 42–55 (1975)

  20. Howarth, R. W. and J. M. Teal: Sulfate reduction in a New England salt marsh. Limnol. Oceanogr. 24, 999–1013 (1979)

  21. Hungate, R. E.: A roll tube method for cultivation of strict anaerobes, pp 117–132. In: Methods in microbiology, Vol. 3B. Ed. by J. R. Morris and D. W. Ribbons. London and New York: Academic Press Inc. 1969

  22. Hungate, R. E.: The rumen fermentation, pp 119–124. In: Microbial production and utilization of gases. Ed. by H. G. Schlegel, G. Gottschalk and N. Pfennig. Göttingen: Akademie der Wissenschaften zu Göttingen 1976

  23. Jones, W. J. and M. J. B. Paynter: Populations of methane-producing bacteria and in vitro methanogenesis in salt marsh and estuarine sediments. Appl. environ. Microbiol. 39, 864–871 (1980)

  24. Josefsson, B., L. Uppström and G. Östling. Automatic spectrophotometric procedure for the determination of the total amount of dissolved carbohydrates in sea water. Deep-Sea Res. 19, 385–395 (1972)

  25. Jørgensen, B. B.: The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22, 814–832 (1977)

  26. Jørgensen, B. B.: A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurements with radiotracer techniques. Geomicrobiol. J. 1, 11–27 (1978)

  27. Kelly, C. K. and D. P. Chynoweth: Comparison of in situ and in vitro rates of methane release in freshwater sediments. Appl. environ. Microbiol. 40, 287–293 (1980)

  28. King, G. M. and W. J. Wiebe: Regulation of sulfate concentrations and methanogenesis in salt marsh soils. Estuar. coast. mar. Sci. 10, 215–223 (1980)

  29. Kosiur, D. R. and A. L. Warford: Methane production and oxidation in Santa Barbara basin sediments. Estuar. coast. mar. Sci. 8, 379–385 (1979)

  30. Laanbroek, H. J. and N. Pfennig: Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Arch. Microbiol. 128, 330–335 (1981)

  31. Mah, R. A., D. M. Ward, L. Baresi and T. L. Glass: Biogenesis of methene. Ann. Rev. Microbiol. 31, 309–401 (1977)

  32. Martens, C. S. and R. A. Berner: Methane production in the interstitial waters of sulfate-depleted marine sediments. Science, N.Y. 185, 1167–1169 (1974)

  33. Martens, C. S. and R. A. Berner: Interstitial water chemistry of anoxic Long Island Sound sediments. I. Dissolved gases. Limnol. Oceanogr. 22, 10–25 (1977)

  34. Marty, D.: Distribution of different anaerobic bacteria in Arabian Sea sediments. Mar. Biol. 63, 277–281 (1981)

  35. McInerney, M. J. and M. P. Bryant: Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl. environ. Microbiol. 41, 346–354 (1981)

  36. Miller, T. L. and M. J. Wolin. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27, 985–987 (1974)

  37. Mountfort, D. A. and R. A. Asher: Effect of inorganic sulfide on the growth and metabolism of Methanosarcina barkeri strain DM. Appl. environ. Microbiol. 37, 670–675 (1979)

  38. Mountfort, D. O. and R. A. Asher: Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of Waimea Inlet, Nelson, New Zealand. Appl. environ. Microbiol. 42, 252–258 (1981)

  39. Mountfort, D. O., R. A. Asher, E. L. Mays and J. M. Tiedje: Carbon and electron flow in mud and sandflat intertidal sediments at Delaware Inlet, Nelson, New Zealand. Appl. environ. Microbiol. 39, 686–694 (1980)

  40. Nedwell, D. B. and J. W. Abram: Relative influence of temperature and electron donor and electron acceptor concentrations on bacterial sulfate reduction in saltmarsh sediment. Microbial Ecology 5, 67–72 (1979)

  41. Oremland, R. S. and B. F. Taylor: Sulfate reduction and methanogenesis in marine sediments. Geochim. cosmochim. Acta 42, 209–214 (1978)

  42. Panganiban, Jr., A. T., T. E. Patt, W. Hart and R. S. Hanson: Oxidation of methane in the abscence of oxygen in lake water samples. Appl. environ. Microbiol. 37, 303–309 (1979)

  43. Postgate, J. R.: Media for sulphur bacteria. Lab. Pract. 15, 1239–1244 (1966)

  44. Postgate, J. R.: The sulphate-reducing bacteria, 151 pp. Cambridge: Cambridge University Press 1979

  45. Ramm, A. E. and D. A. Bella: Sulfide production in anaerobic microcosms. Limnol. Oceanogr. 19, 110–118 (1974)

  46. Reeburgh, W. S.: Methane consumption in Cariaco Trench waters and sediments. Earth planet. Sci. Lett. 28, 337–344 (1976)

  47. Romesser, J. A., R. S. Wolfe, F. Mayer, E. Spiess and A. Walther-Mauruschat: Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch. Microbiol. 121, 147–153 (1979)

  48. Salanitro, J. P. and P. A. Muirhead: Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl. Microbiol. 29, 374–381 (1975)

  49. Sisler, F. D. and C. E. ZoBell: Hydrogen utilization by some marine sulfate-reducing bacteria. J. Bacteriol. 62, 117–127 (1951)

  50. Smith, M. R. and R. A. Mah: Growth and methanogenesis by Methanosarcina strain 227 an acetate and methanol. Appl. environ. Microbiol. 36, 870–879 (1978)

  51. Sørensen, J., B. B. Jørgensen and N. P. Revsbech: A comparison of oxygen nitrate, and sulfate respiration in coastal marine sediments. Microbiol. Ecol. 5, 105–115 (1979)

  52. Sørensen, J., D. Christensen and B. B. Jørgensen: Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anacrobic marine sediment. Appl. environ. Microbiol. 42, 5–11 (1981)

  53. Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis. I. 2. Determination of salinity by titration pp 17–19. Ottawa: Fish. Res. Bd Can. Bull, 167 Sec. Ed. 1972

  54. Taylor, G. T. and J. S. Pirt: Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch. Microbiol. 113, 17–22 (1977)

  55. Thauer, R. K., K. Jungermann and K. Decker: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

  56. Toennis, G. and B. Bakay: Photonephelometric microdetermination of sulfate and organic sulfur. Anal. Chem. 25, 160–165 (1953)

  57. Trüper, H. G. and H. G. Schlegel: Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30, 225–238 (1964)

  58. Van den Berg, L.: Effect of temperature on growth and activity of a methanogenic culture utilizing acetate. Can. J. Microbiol. 23, 898–902 (1977)

  59. Ward, D. M. and G. J. Olson: Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high-sulfate hot spring. Appl. environ. Microbiol. 40, 67–74 (1980)

  60. Warford, A. L., D. R. Kosiur and P. R. Doose: Methane production in Santa Barbara Basin sediments. Geomicrobiol. J. 1, 117–138 (1979)

  61. Widdel, F. and N. Pfennig: Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of a new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129, 395–400 (1981)

  62. Winfrey, M. R. and J. G. Zeikus: Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. environ. Microbiol. 33, 275–281 (1977)

  63. Winter, J. and R. S. Wolfe: Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri. Arch. Microbiol. 121, 97–102 (1979)

  64. Wolin, M. J.: Metabolic interactions among intestinal microorganisms. Am. J. Clin. Nutr. 27, 1320–1328 (1974)

  65. Yamamoto, S., B. J. Alcauskas and T. E. Crozier: Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976)

  66. Zehnder, A. J. B. and T. D. Brock: Anaerobic methane oxidation: occurrence and ecology. Appl. environ. Microbiol. 39, 194–204 (1980)

  67. Zehnder, A. J. B., B. A. Huser, T. D. Brock and K. Wuhrmann: Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124, 1–11 (1980)

Download references

Author information

Additional information

Communicated by T. Fenchel, Aarhus

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gunnarsson, L.Å.H., Rönnow, P.H. Interrelationships between sulfate reducing and methane producing bacteria in coastal sediments with intense sulfide production. Mar. Biol. 69, 121–128 (1982). https://doi.org/10.1007/BF00396891

Download citation


  • Sulfate Reduction
  • Methane Production
  • Methane Concentration
  • Coastal Sediment
  • Acetate Production