Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Potential theory of Monge-Ampère on a Banach space. Minimum principle and poisson property

  • 26 Accesses


We prove the minimum principle and the Poisson property for the potential theory of the homogeneous Monge-Ampère equation on a reflexive Banach space.

This is a preview of subscription content, log in to check access.


  1. 1.

    I. J.Bakelman: Generalized elliptic solutions of the Dirichlet problem for n-dimensional Monge-Ampère equations. In F. E.Browder, editor, Nonlinear Functional Analysis and its Applications, Berkeley, 1983, Proc. Sympos. Pure Math. 45-1, pp. 73–102. American Mathematical Society, Providence, 1986.

  2. 2.

    E. M. J.Bertin: Fonctions convexes et théorie du potentiel. Indag. Math. 41: 385–409, 1979.

  3. 3.

    E. M. J.Bertin: Axiomatic convex potential theory. In I. J.Bakelman, editor, Geometric Inequalities and Convex Bodies, Texas, 1990, pp. 149–180. Marcel Dekker, New York, 1993.

  4. 4.

    E. M. J.Bertin: L'équation de Monge-Ampère dans un espace de Banach. In K.Gowrisankaran, editor, Classical and Axiomatic Potential Theory. Proceedings of the ARW-meeting, Bonas, 1993. Kluwer, Dordrecht, 1994.

  5. 5.

    N.Bourbaki. Topologie générale, chapitres I-IV, Éléments de mathématique. Hermann, Paris, 1971.

  6. 6.

    M. M.Day: Normed Linear Spaces. Springer-Verlag, Berlin, third edition, 1973.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cator, E.A. Potential theory of Monge-Ampère on a Banach space. Minimum principle and poisson property. Potential Analysis 5, 173–182 (1996). https://doi.org/10.1007/BF00396777

Download citation

Mathematics Subject Classifications (1991)

  • 31B35
  • 31C99
  • 31D05

Key words

  • Minimum principle
  • Poisson property
  • Banach space
  • Baire