, Volume 10, Issue 1–6, pp 144–162 | Cite as

Über das Verhalten eines Ringchromosoms in der Mitose und Meiose von Antirrhinum majus L.

  • Arnd Michaelis


The mitotic and meiotic behaviour of a ring-chromosome in Antirrhinum majus was analysed. 26.5% mitotic anaphases showed bridges demonstrating the occurrence of a crossing-over-like process in meristematic cells. From pachytene studies the ring-chromosome could be identified as chromosome 6.

An attempt was made to derive the details of the crossing-over process from the various anaphase configurations in pollen mother cells with a heterozygous ring-rod-bivalent. The observed frequencies could only be brought in approximate correspondance with theoretical values by postulating (i) the occurrence of sister-strand and non-sister-strand crossing-over in certain quantitative combinations, and (ii) an unexplained loss or irricognizability of most double bridges in anaphase I.

The frequency of plants heterozygous for the ring-chromosome in progenies after seifing was 16.8%. The rate of chromosome mutations in these progenies was not increased. Chromosomal aberrations resulting from meiotic disturbances in the ring plants are probably lost by gonal elimination of unbalanced chromosome sets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battacharya, P.: Behavior of the ring-chromosome in Drosophila melanogaster. Proc. roy. Soc. (Lond.) B 64, 199–215 (1950).Google Scholar
  2. Braver, G., and J. L. Blount: Somatic elimination of ring chromosomes in Drosophila melanogaster. Genetics 35, 98 (Abstr.) (1950).Google Scholar
  3. Brown, S. W., and A. Hannah: An induced maternal effect on the stability of the ring-X-chromosome of Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 38, 687–693 (1952).CrossRefGoogle Scholar
  4. Darlington, C. D., and L. F. Lacour: Chromosome breakage and the nucleic acid cycle. J. Genet. 46, 180 (1945).CrossRefGoogle Scholar
  5. —, and M. B. Upcott: Spontaneous chromosome change. J. Genet. 41, 297–338 (1941).CrossRefGoogle Scholar
  6. Ernst, H.: Meiosis and crossing over. Zytologische und genetische Untersuchungen an Antirrhinum majus L. Z. Bot. 33, 241–294 (1938).Google Scholar
  7. —: Zytogenetische Untersuchungen an Antirrhinum majus L. Z. Bot. 34, 81–111 (1939).Google Scholar
  8. Giles, N.: Spontaneous chromosome aberrations in Tradescantia. Genetics 25, 69–87 (1940).PubMedPubMedCentralGoogle Scholar
  9. Levan, A.: Self-perpetuating ring chromosomes in two human tumours. Hereditas (Lund) 42, 366–372 (1950).CrossRefGoogle Scholar
  10. McClintock, B.: A correlation of ring-shaped chromosomes with variegation in Zea mays. Proc. nat. Acad. Sci.(Wash.) 18, 677–681 (1932).CrossRefGoogle Scholar
  11. —: The production of homozygous deficient tissue with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23, 315–376 (1938).PubMedPubMedCentralGoogle Scholar
  12. —: Spontaneous alterations in chromosome size and form in Zea mays. Cold Spr. Harb. Symp. quant. Biol. 9, 72–80 (1941).CrossRefGoogle Scholar
  13. Mechelke, F.: Ein Fall natürlicher Triploidie und vereinzelter Ringchromosomenbildung bei Hordeum spontaneum Koch. Z. indukt. Abstamm.-u. Vererb.-Lehre 83, 442–446 (1951).Google Scholar
  14. Michaelis, A.: Über den Fall „Angusta” und die Häufigkeit spontaner Genom- und Chromosomenmutationen bei Antirrhinum majus L. Kulturpflanze 7 (1959) (im Druck).Google Scholar
  15. Morgan, L. V.: A closed X chromosome in Drosophila melanogaster. Genetics 18, 250–283 (1933).PubMedPubMedCentralGoogle Scholar
  16. Nawaschin, M.: Unbalanced somatic chromosomal variations in Crepis. Univ. Calif. Publ. Agr. Sci. 6, 95–106 (1930).Google Scholar
  17. Rieger, R.: Inhomologenpaarung und Meioseablauf bei haploiden Formen von Antirrhinum majus L. Chromosoma (Berl.) 9, 1–38 (1957).CrossRefGoogle Scholar
  18. Schultz, J., and D. G. Catcheside: The nature of closed X chromosomes in Drosophila melanogaster. J. Genet. 35, 315–320 (1937).CrossRefGoogle Scholar
  19. Schwartz, D.: The behavior of an X-ray-induced ring chromosome in maize. Amer. Naturalist 87, 19–28 (1953).CrossRefGoogle Scholar
  20. —: Evidence for sister-strand crossing-over in maize. Genetics 38, 251–260 (1953).PubMedPubMedCentralGoogle Scholar
  21. Schwartz, D.: Studies on the mechanism of crossing-over. Genetics 39, 692–700 (1954).PubMedPubMedCentralGoogle Scholar
  22. Schwartz, D.: Studies on crossing-over in maize and Drosophila. J. cell. comp. Physiol. 45, Suppl. 2, 171–188 (1955).CrossRefGoogle Scholar
  23. Shult, E. E., and C. C. Lindegren: Orthoorientation: a new tool for genetical analysis. Genetica 29, 58–82 (1958).CrossRefPubMedGoogle Scholar
  24. Stino, K. R.: Inheritance in Nicotiana tabacum. J. Hered. 31, 19–24 (1940).Google Scholar
  25. Sturtevant, A. H., and G. W. Beadle: The relations of inversions in the X-chromosome of Drosophila melanogaster to crossing-over and disjunction. Genetics 21, 554–604 (1936).PubMedPubMedCentralGoogle Scholar
  26. Upcott, M.: The genetic structure of Tulipa. II. Structural hybridity. J. Genet. 34, 339–348 (1937).CrossRefGoogle Scholar
  27. Weinstein, A.: The theory of multiple-strand crossing-over. Genetics 35, 155–199 (1935).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • Arnd Michaelis
    • 1
    • 2
  1. 1.Institut für Kulturpflanzenforschung der Deutschen Akademie der Wissenschaften zu Berlin in GaterslebenDeutschland
  2. 2.Institut für Genetik der Martin-Luther-Universität HalleDeutschland

Personalised recommendations