Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

l-glutamine: a major substrate for tumor cells in vivo?

Summary

From 65 human breast cancer xenografts investigated, a net glutamine uptake was found in 13 tumors (mean±SE: 15.7±4.5 nmol/g per min) whereas a net release (22.5±3.3 nmol/g per min) was observed in 40 tumors. In 12 tumors neither a significant net uptake nor a net release was obvious. There is experimental evidence that glutamine is taken up by cancer cells only at arterial concentrations>0.5 mM. Another parameter determining glutamine utilization by tumor cells may be the tissue oxygenation. In hypoxic or anoxic tumor areas, glutamine oxidation is unlikely since oxygen is required for the reoxidation of coenzymes which are reduced in the course of this metabolic pathway. The pronounced net release could be due to proteolysis within the tumors investigated. In ascitic fluid (DS-carcinosarcoma), glutamine accumulated during growth, implicating a reduction in the glutamine consumption rate, proposedly also due to a worsening of the oxygen supply to the suspended tumor cells. Thus, the generally held opinion that l-glutamine is a (if not the) major substrate for the energy metabolism of rapidly growing tumor cells should be reconsidered since evidence for this hypothesis has been derived mainly from in vitro system with abundant oxygen.

This is a preview of subscription content, log in to check access.

References

  1. Busemeyer J, Vaupel P, Thews G (1977) Diffusion coefficients of glucose in tumor tissue. Pfluegers Arch 368:R17

  2. Carrascosa JM, Martinez P, de Castro IN (1984) Nitrogen movement between host and tumor in mice incubated with Ehrlich ascitic tumor cells. Cancer Res 44:3831–3835

  3. Coles NW, Johnstone RM (1962) Glutamine metabolism in Ehrlich ascites carcinoma cells. Biochem J 83:284–291

  4. Eagle H (1965) The specific amino acid requirements of a human carcinoma cell (strain HeLa) in tissue culture. J Exp Med 102:37–48

  5. Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R (1956) The growth response of mammalian cells in tissue culture to l-glutamine and l-glutamic acid. J Biol Chem 218:607–616

  6. Eigenbrodt E, Fister P, Reinacher M (1985) New perspectives on carbohydrate metabolism in tumor cells. In: Beitner R (ed) Regulation of carbohydrate metabolism, vol II. CRC Press, Boca Raton, pp 141–179

  7. Gabbert H, Wagner R (1983) Tumorzellproliferation und Tumorvaskularisation experimentell erzeugter Dickdarmkarzinome wähend früher Wachstumsphasen. Mikrozirk Forsch Klin 2:107–113

  8. Gatenby RA, Coia LR, Richter MP, Katz H, Moldofsky PJ, Engstrom P, Brown DQ, Brookland R, Broder GJ (1985) Oxygen tension in human tumors: In vivo mapping using CT-guided probes. Radiology 156:211–214

  9. Goodlad GAJ (1964) Protein metabolism and tumor growth. In: Munro HN, Allison JB (eds) Mammalian protein metabolism, vol II. Academic Press, New York London, pp 415–444

  10. Gullino PM, Grantham FH, Courtney AH (1967) Utilization of oxygen by transplanted tumors in vivo. Cancer Res 27:1020–1030

  11. Jewell WR, Krishnan EC, Schloerb PR (1975) Apparent cellular ingress of albumin in Walker 256 tumor and rat muscle. Cancer Res 35:405–408

  12. Knox WE, Linder M, Friedell GH (1970) A series of transplantable rat mammary tumors with graded differentiation, growth rate, and glutaminase content. Cancer Res 30:283–287

  13. Kovacevic Z, Morris H (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32:326–333

  14. Kovacevic Z, McGivan JD (1983) Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63:547–605

  15. Kvamme E, Svenneby G (1961) The effect of glucose on glutamine utilization by Ehrlich ascites tumor cells. Cancer Res 21:92–98

  16. Lazo PA (1981) Amino acids and glucose utilization by different metabolic pathways in ascites tumour cells. Eur J Biochem 117:19–25

  17. Levintow L (1954) The glutamyltransferase activity of normal and neoplastic tissues. J Natl Cancer Inst 15:347–352

  18. Li CKN (1982) The glucose distribution on 9L rat brain multicell tumor spheroids and its effect on cell necrosis. Cancer 50:2066–2073

  19. Moreadith RW, Lehninger AL (1984) The pathway of glutamate and glutamine oxidation by tumor cell mitochondria. J Biol Chem 259:6215–6221

  20. Moyer GH, Pitot H (1974) Static and dynamic aspects of amino acid pools in rat liver and Morris hepatomas 9618A and 7800. Cancer Res 34:2642–2653

  21. Mueller-Klieser W, Sutherland RM (1982) Influence of convection in the growth medium on oxygen tensions in multicellular tumor spheroids. Cancer Res 42:237–242

  22. Neumann RE, McCoy TA (1956) Dual requirement of Walker Carcinosarcoma 256 in vitro for asparagine and glutamine. Science 124:124–125

  23. Quadbeck R (1981) Stoffwechselwirkungen von einzelnen Aminosäuren bei parenteraler Applikation-zugleich ein Beitrag zur Aminosäure-Toxizität. Inaugural-Dissertation, Justus-Liebig-Universität Giessen

  24. Rabinovitz M, Olson ME, Greenberg DM (1956) Role of glutamine in protein synthesis by the Ehrlich ascites carcinoma. J Biol Chem 222:879–893

  25. Regan DH, Lavietes BB, Regan MG, Denopoulus HB, Morris HP (1973) Glutamate-mediated respiration in tumors. J Natl Cancer Inst 51:1013–1017

  26. Reitzer LJ, Wice M, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676

  27. Rouser G, Samuels AJ, Heller D, Jelinek B (1962) Free amino acids in the blood of man and animals. III. Chronic lymphatic and acute leukemias. In: Holden JT (ed) Amino acid pools. Elsevier, New York, pp 388–395

  28. Sauer LA, Dauchy RT (1983) Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats. Cancer Res 43:3497–3503

  29. Sauer LA, Dauchy RT, Nagel WO, Morris HP (1980) Mitochondrial malic enzymes. J Biol Chem 255:3844–3848

  30. Sauer LA, Stayman III JW, Dauchy RT (1982) Amino acid, glucose, and lactic acid utilization in vivo by rat tumors. Cancer Res 42:4090–4097

  31. Scornik OA (1984) Effects of inhibitors of protein degradation on the rate of protein synthesis in Chinese hamster ovary cells. J Cell Physiol 121:257–262

  32. Steinau HU, Bastert G, Eichholz H, Fortmeyer HP, Schmidt-Matthiesen H (1981) Epigastric pouching technique: human xenografts in rnu/rnu rats. In: Bastert GB, Fortmeyer HP, Schmidt-Matthiesen H (eds) Thymusaplastic nude mice and rats in clinical oncology. Fischer, Stutgart New York, pp 531–542

  33. Striebel JP (1985) Aminosäurenaufnahme und-abgabe, neoplastischer Gewebe. 4. Gemeinsame Jahrestagung der Deultschen und Österreichischen Arbeitsgemeinschaften für künstliche Ernährung. Heidelberg

  34. Tannock IF, Steele D, Roberts J (1986) Influence of reduced concentration of l-glutamine on growth and viability of cells in monolayer, in spheroids, and in experimental tumors. Br J Cancer 54:733–741

  35. Vaupel P (1974) Atemgaswechsel und Glucosestoffwechsel von Implantationstumoren (DS-Carcinosarkom) in vivo. Funktionsanalyse biolog Systeme 1:1–138

  36. Vaupel P (1977) Hypoxia in neoplastic tissue. Microvasc Res 13:399–408

  37. Vaupel P (1979) Oxygen supply to malignant tumors. In: Peterson HI (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. CRC Press, Boca Raton, pp 143–168

  38. Vaupel P (1982) Pathophysiologie der Durchblutung maligner Tumoren. Funktionsanalyse biology Systeme 8:155–170

  39. Vaupel P, Hammersen F (eds) (1983) Mikrozirkulation in malignen Tumoren. Karger, Basel München Paris London New York Tokyo Sydney

  40. Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. Rec. Res Cancer Res 104:71–109

  41. Vaupel P, Frinak S, Bicher HI (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41:2008–2013

  42. Zielke HR, Ozand PT, Tidon JT, Sevdalian DA, Cornblath M (1978) Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts. J Cell Physiol 95:41–48

  43. Zielke HR, Sumbilla CM, Sevdalian DA, Hawkins RL, Ozand PT (1980) Lactate: a major product of glutamine metabolism by human diploid fibroblasts. J Cell Physiol 104:433–441

  44. Zielke HR, Zielke CL, Ozand PT (1984) Glutamine: a major energy source for cultured mammalian cells. Fed Proc 43:121–125

Download references

Author information

Correspondence to P. Vaupel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kallinowski, F., Runkel, S., Fortmeyer, H.P. et al. l-glutamine: a major substrate for tumor cells in vivo?. J Cancer Res Clin Oncol 113, 209–215 (1987). https://doi.org/10.1007/BF00396375

Download citation

Key words

  • Glutamine
  • Glutaminolysis
  • Tumor energy metabolism
  • Tumor substrate utilization
  • Tumor oxygenation