Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Nucleic acid synthesis in oceanic microplankton from the drake passage, antarctica: Evaluation of steady-state growth

  • 38 Accesses

  • 40 Citations

Abstract

Differential uptake of [3H]adenine and [3H]thymidine, and incorporation of tritium label into proteins, RNA and DNA as a function of depth, indicate that surface microplankton incorporated most of the assimilated radioisotopes into nucleic acids. Growth processes for deep-sea microplankton were shifted towards higher rates of [3H]-adenine incorporation into RNA compared to rates of thymidine incorporation into DNA. Deep-sea microplankton also diverted a larger portion (up to 80%) of the assimilated tritium into biosynthetic pathways for amino acid and eventual incorporation into proteins. These results imply that protein synthesis is vital for deep-sea microplankton where populations may be stressed by low levels of available nutrients. The rates at which microplankton incorporated [3H]adenine into RNA and DNA, and [3H]thymidine into DNA, suggest that oceanic microplankton are in a transient state of balanced growth, i.e. between two steady-state growth conditions, irrespective of potential growth rates. Our results support the hypothesis that oceanic microplankton are in various growth states.

This is a preview of subscription content, log in to check access.

Literature Cited

  1. Brock, T. D.: Bacterial growth rate in the sea: direct analysis by thymidine autoradiography. Science, N.Y. 155, 81–83 (1967)

  2. Brock, T. D.: Microbial growth rate in nature. Bacteriol. Rev. 35, 39–58 (1971)

  3. Brunschede, H., T. L. Dove and H. Bremer: Establishment of exponential growth after a nutritional shift-up in Escherichia coli B/r: accumulation of deoxyribonucleic acid, ribonucleic acid, and protein. J. Bacteriol. 129, 1020–1033 (1977)

  4. Burney, C. M., K. M. Johnson, D. M. Lavorie and J. McN. Sieburth: Dissolved carbohydrates and microbial ATP in the North Atlantic concentrations and interactions. Deep-Sea Res. 26 A, 1267–1290 (1979)

  5. Button, D. K.: On the theory of control of microbiol growth kinetics by limiting nutrient concentrations. Deep-Sea Res. 25, 1163–1177 (1978)

  6. Christian, R. R., R. B. Hanson and S. Y. Newell: A comparison of methods to measure bacterial growth rates in mixed cultures. Appl. environ. Microbiol. 43, 1160–1165 (1982)

  7. Cleaver, J. E.: Thymidine metabolism and cell kinetics. In: Frontiers of biology, pp 7–259. Ed. by A. Neuberger and E. L. Tatum. Amsterdam: North-Holland Research Monographs 1967

  8. Dennis, P. P. and H. Bremer: Macromolecular composition during steady-state growth of Escherichia coli B/r. J. Bacteriol. 119, 270–281 (1974)

  9. El-Sayed, S. Z. and S. Taguchi: Primary production and standing crop of phytoplankton along the ice edge in the Weddell Sea. Deep-Sea Res. 28, 1017–1032 (1981)

  10. Faust, M. A. and D. L. Correll. Autoradiographic study to detect metabolically active phytoplankton and bacteria in the Rhode River Estuary. Mar. Biol. 41, 293–305 (1977)

  11. Fellows, D. A., D. M. Karl and G. A. Knauer: Large particle fluxes and the vertical transport of living carbon in the upper 1500 meters of the northeast Pacific Ocean. Deep-Sea Res. 28A, 921–936 (1981)

  12. Fuhrman, J. A. and F. Azam: Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Appl. environ. Microbiol. 39, 1085–1095 (1980)

  13. Fuhrman, J. A. and F. Azam: Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66, 109–120 (1982)

  14. Glaser, V. M., M. A. Al-Nuri, V. V. Groshev and S. V. Shestakov: The labelling of nucleic acids by radioactive precursors in the blue-green algae Anacystis nidulans and Synechocystis aquatilis Sanv. Arch. Microbiol. 92, 217–226 (1973)

  15. Gocke, K.: Studies of short-term variations of heterotrophic activity in the Kiel Fjord. Mar. Biol. 33, 49–55 (1975)

  16. Hagstrom, A., U. Larsson, P. Horstedt and S. Normark: Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. environ. Microbiol. 37, 805–812 (1979)

  17. Hamilton, R. D. and J. E. Preslan: Observation of heterotrophic activity in the eastern tropical Pacific. Limnol. Oceanogr. 15, 395–401 (1970)

  18. Hanson, R. B.: Microbial dynamics in Antarctic Waters, Drake Passage. Antarctic. J., U.S. 15, 123–135 (1980)

  19. Hanson, R. B. and D. H. Pope: Bacterioplankton adaptation and growth in different zones of the Antarctic Ocean. Antarctic J., U.S. 16, 130–132 (1981)

  20. Hochstadt, J.: The role of the membrane in the utilization of nucleic acid precursors CRC. Vol. 2, pp 259–310. Crit. Rev. Biochem. 1974

  21. Holm-Hansen, O., S. Z. El-Sayed, G. A. Franceschini and R. L. Cuhel: Primary production and the factors controlling phytoplankton growth in the Southern Ocean, pp 11–50, In: Adaptations within Antarctic ecosystems, Third SCAR Symposium on Antarctic Biology. Ed. by G. A. Llano. Washington, D.C.: Smithsonian Institute 1977

  22. Honjo, S., S. J. Mangami and J. J. Cole: Sedimentation of biogenic matter in the Deep-Sea. Deep-Sea Res. 29A, 609–625 (1982)

  23. Hoppe, H.-G.: Relations between active bacteria and heterotrophic potential in the sea. Netherland J. Sea Res. 12, 78–98 (1978)

  24. Jannasch, H. W.: Growth of marine bacteria at limiting concentrations of organic carbon in sea water. Limnol. Oceanogr. 12, 264–271 (1967)

  25. Jannasch, H. W.: Steady-state and the chemostat in ecology. Limnol. Oceanogr 19, 716–720 (1974)

  26. Jannasch, H. W. and C. O. Wirsen: Microbial activity in undecompressed and decompressed deep-seawater samples. Appl. environ. Microbiol. 43, 1116–1124 (1982)

  27. Jannasch, H. W., C. O. Wirsen and C. D. Taylor: Deep-sea bacteria: isolation in the absence of decompression. Science, N.Y. 216, 1315–1317 (1982)

  28. Karl, D. M.: Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl. environ. Microbiol. 38, 850–860 (1979)

  29. Karl, D. M.: Simultaneous rates of ribonucleic acid and deoxyribonucleic acid synthesis for estimating growth and cell division of aquatic microbial communities. Appl. environ. Microbiol. 42, 802–810 (1981)

  30. Karl, D. M., C. D. Winn and D. C. L. Wong: RNA synthesis as a measure of microbial growth in aquatic environments. I. Evaluation, verification and optimization of methods. Mar. Biol. 64, 1–12 (1981a)

  31. Karl, D. M., C. D. Winn and D. C. L. Wong: RNA synthesis as a measure of microbial growth in aquatic environments. II. Fixed applications. Mar. Biol. 64, 13–21 (1981b)

  32. Leick, V.: Ratios between contents of DNA, RNA, and protein in different microorganisms as a function of maximal growth rate. Nature, Lond. 217, 1153–1155 (1968)

  33. Menzel, D. W.: Primary production, dissolved and particulate organic matter, and sites of oxidation of organic matter, pp 659–678. In: The sea, Vol. 5. Marine chemistry. Ed. by E. D. Goldberg. New York: John Wiley and Sons, Inc. 1974

  34. Meyer-Reil, L.-A., M. Bolter G. Liebezeit and W. Schramm: Short-term variations in microbiological and chemical parameters. Mar. Ecol. Prog. Ser. 1, 1–6 (1979)

  35. Monheimer, R. H.: Sulfate uptake as a measure of planktonic microbial production in fresh water ecosystem. Can. J. Microbiol. 20, 825–831 (1974)

  36. Morita, R. Y.: Psychrophilic bacteria. Bacterial Rev 39, 144–167 (1975)

  37. Morita, R. Y.: Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria. In: The survival of vegetative microbes, pp 279–298 Ed. by T. G. R. Gray and J. R. Postgate. Cambridge: Cambridge Univ. Press 1976

  38. Morita, R. Y., R. P. Griffiths and S. S. Hayasaka: heterotrophic activity of microorganisms in Antarctic waters. In: Adaptations within Antarctic ecosystems, pp 99–113. Ed. by G. R. Llano. Houston: Gulf Publishing Co. 1977

  39. Novitsky, J. A. and R. Y. Morita: Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Appl. environ. Microbiol. 33 635–641 (1977)

  40. Novitsky, J. A. and R. Y. Morita: Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48, 289–295 (1978)

  41. Peroni, C. and O. Lavarell: Microbial activities as a function of water depth in the Ligurian Sea: An autoradiographic study. Mar. Biol. 30, 37–50 (1975)

  42. Poindexter, J. S.: Oligotrophy: fast and famine existence. Adv. Microb. Ecol. 5, 67–93 (1981)

  43. Rosenbaum-Oliver, D. and S. Zamenhof: Degree of participation of exogenous thymidine in the overall deoxyribonucleic synthesis in Escherichia coli. J. Bacteriol. 110, 585–591 (1972)

  44. Schaechter, M.: Growth: cells and populations. In: Biochemistry of bacterial growth, pp 137–159. Ed. by J. Mandelstam and K. McQuillen. Oxford, London, Edinburgh, Melbourne: Blackwell Scientific Publications 1973

  45. Shilo, M.: Strategies of microbial life in extreme environments. Dahlem Conference Life Science Research Report 13, Berlin 19

  46. Sieburth, J. M.: Bacterial substrates and productivity in marine ecosystems. Ann. Rev. Ecol. Syst. 7, 259–285 (1976)

  47. Sieburth, J. McN., K. M. Johnson, C. M. Burney and D. M. Lavoie: Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion cultures. Helgol. wiss. Meeresunters. 30, 565–574 (1977)

  48. Sorokin, Yu. I., E. B. Pavelyeva and M. I. Vasilyeva: Productivity and trophic role of bacterioplankton in the region of equatorial divergence. Polskie Arch. Hydrobiol. 24, 241–259 (1977)

  49. Stanier, R. Y., M. Dourdoroff and E. A. Adelberg: The microbial world, 873 pp. New Jersey: Prentice-Hall, Inc. 1970

  50. Stevenson, L. H.: A case for bacteria dormancy in aquatic systems. Microb Ecol 4, 127–133 (1978)

  51. Varrichio, R.: “Compartmentalization”, of Escherichia coli ribosomes and ribonucleic acid. J. Bacteriol. 109, 1284–1294 (1972)

  52. Wangersky, P. J.: The role of particulate matter in the productivity of surface waters. Helgol. wiss. Meeresunters. 30, 546–564 (1977)

  53. Watson, S. W., T. J. Novitsky, J. L. Quinby and F. W. Valois, Determination of bacterial number and biomass in the marine environment. Appl. environ. Microbiol 33, 940–946 (1979)

  54. Wright, R. T.: Measurement and significance of specific activity in heterotrophic bacteria of natural waters. Appl. environ. Microbiol. 36, 297–305 (1978)

  55. Zimmerman, R., R. Iturriaga and J. Becker-Birck: Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. environ. Microbiol. 36, 926–935 (1978)

Download references

Author information

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanson, R.B., Lowery, H.K. Nucleic acid synthesis in oceanic microplankton from the drake passage, antarctica: Evaluation of steady-state growth. Mar. Biol. 73, 79–89 (1983). https://doi.org/10.1007/BF00396288

Download citation

Keywords

  • Nucleic Acid
  • Adenine
  • Thymidine
  • Tritium
  • Biosynthetic Pathway