Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

On the size of jump-critical ordered sets

  • 93 Accesses

  • 17 Citations

Abstract

The maximum size of a jump-critical ordered set with jump-number m is at most (m+1)!

This is a preview of subscription content, log in to check access.

References

  1. 1.

    CheinM. and HabibM.: 1980, The jumps number of dags and posets: An Introduction, Ann. Discrete Math. 9, 189–194.

  2. 2.

    CogisO. and HabibM.: 1979, Nombre de sauts et graphes série-parallèles, RAIRO Inform. Théor. 13, 3–18.

  3. 3.

    DilworthR. P.: 1950, A Decomposition Theorem for Partially Ordered Sets, Ann. Math. 51, 161–166.

  4. 4.

    DuffusD., RivalI. and WinklerP.: 1982, Minimizing Setups for Cycle-Free Ordered Sets, Proc. Amer. Math. Soc. 85, 509–513.

  5. 5.

    Pulleyblank, W. R.: On Minimizing Setups in Precedence Constrained Scheduling, Discrete Appl. Math. (to appear).

  6. 6.

    Rival, I.: Optimal Linear Extensions by Interchanging Chains, Proc. Amer. Math. Soc. (to appear).

Download references

Author information

Additional information

Communicated by I. Rival

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Zahar, M.H., Schmerl, J.H. On the size of jump-critical ordered sets. Order 1, 3–5 (1984). https://doi.org/10.1007/BF00396268

Download citation

AMS (MOS) subject classifications (1980)

  • Primary 06A10
  • secondary 68C25

Key words

  • Jump number
  • jump-critical ordered sets