Marine Biology

, Volume 63, Issue 3, pp 217–226 | Cite as

Elemental and biochemical composition of salps (Tunicata: Thaliacea)

  • L. P. Madin
  • C. M. Cetta
  • V. L. McAlister


Carbon and nitrogen content have been measured in the solitary and aggregate generations of 11 species of salps. Regression equations for each species and generation permit estimation of carbon or nitrogen content as a function of length of live individuals. Different species of the same length may have nearly tenfold differences in carbon content. Fractionation and biochemical analysis of some samples revealed that the organic content of salps is approximately 80% protein. Ash-free dry weights average 27% of dry weights; mean carbon content is 29% of ash-free dry weight. Excess ash-free dry weight not accountable as organic material is thought to be water of hydration.


Nitrogen Hydration Fractionation Carbon Content Organic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Childress, J. J. and M. Nygaard: Chemical composition and buoyancy of midwater crustaceans as function of depth of occurrence off Southern California. Mar. Biol. 27, 225–238 (1974)Google Scholar
  2. Curl, H.: Standing crops of carbon, nitrogen, and phosphorus, and transfer between trophic levels, in continental shelf waters south of New York. Rapp. Proc.-Verb. Cons. int. Explor. Mer. 153, 183–189 (1962)Google Scholar
  3. Dehl, R. E.: Collagen: Mobile water content of frozen fibers. Science, N.Y. 170, 738–739 (1970)Google Scholar
  4. Deibel, D. R.: Feeding, growth and swarm dynamics of neritic tunicates from the Georgia Bight. Ph. D. Thesis. Univ. of Georgia, Athens, 156 pp. 1980Google Scholar
  5. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)Google Scholar
  6. Foxton, P.: The distribution and life history of Salpa thompsoni Foxton with observations on a related species, Salpa gerlachei Foxton. Discovery Rept. 34, 1–116 (1966)Google Scholar
  7. Godeaux, J.: Observations sur la tunique des tuniciers pelagiques. Rapp. et proces-verbaux des Reunions. Comm. Int. Explor. Scient. Mer Medit. 18, 457–460 (1965)Google Scholar
  8. Gosline, J. M.: Connective tissue mechanics of Metridium senile I. Structural and compositional aspects. J. exp. Biol. 55, 763–774 (1971)Google Scholar
  9. Hall, D. A. and H. Saxl: Human and other animal cellulose. Nature, Lond. 187, 547–550 (1960)Google Scholar
  10. Harbison, G. R. and R. W. Gilmer: The feeding rates of the pelagic tunicate Pegea confederata and two other salps. Limnol. Oceanogr. 21, 517–528 (1976)Google Scholar
  11. Hartree, E. F.: Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427 (1972)Google Scholar
  12. Kremer, P.: Excretion and body composition of the ctenophore Mnemiopsis leidyi (A. Agassiz): Comparisons and consequences. 10th European Symposium on Marine Biology, Ostend, Belgium. Sept. 17–23, 1975, 2, 351–362 (1975)Google Scholar
  13. Madin, L. P. and G. R. Harbison: Salps of the genus Pegea Savigny 1816 (Tunicata: Thaliacea). Bull. mar. Sci. 28, 335–344 (1978)Google Scholar
  14. Marsh, J. B., and D. B. Weistein: Simple charring method for determination of lipids. J. Lipids Res. 7, 574–576 (1966)Google Scholar
  15. Mullin, M. M. and P. M. Evans: The use of a deep tank in plankton ecology. 2. Efficiency of a planktonic food chain. Limnol. Oceanogr. 19, 902–911 (1974)Google Scholar
  16. Omori, M.: Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Mar. Biol. 3, 4–10 (1969)Google Scholar
  17. Reeve, M. R. and L. P. Baker: Production of two planktonic carnivores (Chaetognath and Ctenophore) in south Florida inshore waters. Fish. Bull. 73, 238–248 (1975)Google Scholar
  18. Silver, M. W.: The habitat of Salpa fusiformis (Chordata: Tunicata) in the California Current as defined by stomach content studies and the effect of salp swarms on the food supply of the plankton community, 135 pp. Ph. D. Thesis. Univ. of California, San Diego 1971Google Scholar
  19. Smith, K. L., G. R. Harbison, G. T. Towe and C. H. Clifford: Respiration and chemical composition of Pleurocodes planipes (Decapoda: Galatheidae): Energetic significance in an upwelling system. J. Fish. Res. Bd Can. 32, 1607–1612 (1975)Google Scholar
  20. Soest, R. W. M. van: The genus Thalia Blumenbach 1798 (Tunicata, Thaliacea), with descriptions of two new species. Beaufortia 20, 193–212 (1973)Google Scholar
  21. Soest, R. W. M. van: Taxonomy of the subfamily Cyclosalpinae Yount, 1954 (Tunicata, Thaliacea) with descriptions of two new species. Beaufortia 22, 17–55 (1974a)Google Scholar
  22. Soest, R. W. M. van: A revision of the genera Salpa Forskal, 1775, Pegea Savigny, 1816, and Ritteriella Metcalf, 1919 (Tunicata, Thaliacea). Beaufortia 22, 153–191 (1974b)Google Scholar
  23. Sokal, R. R. and F. J. Rohlf: Biometry. 776 pp. San Francisco: Freeman 1969Google Scholar
  24. Thompson, H.: Pelagic tunicates of Australia, 196 pp. Melbourne: Commonwealth Council for Scientific and Industrial Research 1948Google Scholar
  25. Wiebe, P. H., L. P. Madin, L. R. Haury, G. R. Harbison and L. M. Philbin: Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar. Biol. 53, 249–255 (1979)Google Scholar
  26. Yount, J. L.: Distribution and ecologic aspects of central Pacific Salpidae (Tunicata). Pacific Science 12, 111–130 (1958)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • L. P. Madin
    • 1
  • C. M. Cetta
    • 1
  • V. L. McAlister
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations