Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Barriers to application of genetically modified lactic acid bacteria

Abstract

To increase the acceptability of food products containing genetically modified microorganisms it is necessary to provide in an early stage to the consumers that the product is safe and that the product provide a clear benefit to the consumer. To comply with the first requirement a systematic approach to analyze the probability that genetically modified lactic acid bacteria will transform other inhabitants of the gastro-intestinal (G/I) tract or that these lactic acid bacteria will pick up genetic information of these inhabitants has been proposed and worked out to some degree. From this analysis it is clear that reliable data are still missing to carry out complete risk assessment. However, on the basis of present knowledge, lactic acid bacteria containing conjugative plasmids should be avoided. Various studies show that consumers in developed countries will accept these products when they offer to them health or taste benefits or a better keepability. For the developing countries the biggest challenge for scientists is most likely to make indigenous fermented food products with strongly improved microbiological stability due to broad spectra bacteriocins produced by lactic acid bacteria. Moreover, these lactic acid bacteria may contribute to health.

This is a preview of subscription content, log in to check access.

References

  1. Adams MR & Marteau P (1995) On the safety of lactic acid bacteria from foods. Int. J. Food Microbiol. 27: 263–264

  2. Brockmann E, Jacobsen BL, Hertel C, Ludwig W & Schleifer KH (1996) Monitoring of genetically modified Lactococcus lactis in gnotobiotic and conventional rats by using antibiotic resistance markers and specific probe or primer based methods. Syst. Appl. Microbiol. 19 (in press)

  3. Campbell AL (1990) in: Introduction of genetically modified organisms into the Environment (H. A. Mooney and G. Bernardi, Ed.), Scope 44, J. Wiley & Sons, New York

  4. Chan HW, Israel MA, Garon CF, Rowe WP & Martin MA (1979) Molecular cloning of polyoma virus DNA in Escherichia coli: Lambda phage vector system. Science 203: 887–892

  5. El Alami N, Boquien C-Y & Corrieu G (1992) Batch cultures of recombinant Lactococcus lactis subsp lactis in stirred fermenter. II Plasmid transfer in mixed cultures. Appl. Microbiol. Biotechnol. 37: 364–368

  6. Gasser F (1994) Safety of lactic acid bacteria and their occurrence in human clinical infections. Bull. Inst. Pasteur 92: 45–67

  7. Geis A, Singh J & Teuber M (1983) Potential of lactic streptococci to produce bacteriocins. Appl. Environ. Microbiol. 45: 205–211

  8. Gilliland SE, Nelson CR & Maxwell C (1985) Assimilation of cholesterol of Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377–381

  9. Gilliland SE (1990) Health and nutritional benefits for lactic acid bacteria. FEMS Microbiol. Rev. 87: 175–188

  10. Giuseppin MLF, Almkerk JW, Heistek JC & Verrips CT (1993) Comparative study on the production of guar α-galactosidase by Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2 in continuous cultures. Appl. Env. Microbiol. 59: 52–59

  11. Guinee P (1977) Tweede Jaarverslag KNAW Commissie, pg 94–108, KNAW Amsterdam

  12. Hamstra AM & Feenstra MH (1989) SWOKA report, SWOKA, Den Haag

  13. Heijs WJM, Midden CJH & RAJ Drabbe (1993) Biotechnologie, houdingen en achtergronden. Technische Universiteit Eindhoven

  14. Isberg RR & Falkow S (1985) A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317: 262–264

  15. Israel MA, Chan HW, Rowe WP & Martin (1979) Molecular cloning of polyoma virus DNA in Escherichia coli: Plasmid vector system. Science 203: 883–887

  16. Jett BD, Huycke MM & Gillmore MS (1994) Virulence of enterococci. Clin. Microbiol. Rev. 7: 462–478

  17. Klaver FAM & Van de Meer R (1993) The assumed assimilation of cholesterol by Lactobacilli is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59: 1120–1124

  18. Klein G, Bonaparte C & Reuter G (1992) Laktobazillen als Starterkulturen für die Milchwirtschaft unter dem Gesichtspunkt der Sicheren Biotechnologie. Milchwissenschalt 47: 632–636

  19. Klijn N, Weerkamp AH & de Vos WM (1991) Identification of mesophyllic lactic acid bacteria by using polymerase chain reaction amplified variable regions of 16S rRNA and specific DNA probes. Appl. Environ. Microbiol. 57: 3390–3393

  20. Klijn N, Weerkamp AH & de Vos WM (1995a) Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl. Environ. Microbiol. 61: 788–792

  21. Klijn N, Weerkamp AH & de Vos WM (1995b) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl. Environ. Microbiol. 61: 2771–2774

  22. Klijn N, Weerkamp AH & de Vos WM (1995c) Biosafety assessment of the application of genetically modified Lactococcus lactis spp. in the production of fermented milk products. System. Appl. Microbiol. 18: 486–492

  23. Langella P, LeLoir Y, Ehrlich SD & Gruss A (1993) Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J. Bacteriol. 175: 5806–5813

  24. Leenhouts KJ, Kok J & Venema G (1990) Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl. Environ. Microbiol. 56: 2726–2735

  25. Maat J, Edens L, Ledeboer AM & Verrips CT (1981) Unilever patent application EP-B 0077109

  26. Maat J et al. (1992) Xylanases and their application in Bakery. pp. 349–360. In: Xylans and Xylanases J. Visser et al. ed. Elsevier Science Publishers, Amsterdam 1992

  27. Marteau P & Rambaud J-C (1993) Potential of using lactic acid bacteria for therapy and immuno-modulation in man. FEMS Microbiol. Rev. 12: 207–220

  28. Martin S & Tait J (1992) Attitudes of selected public groups in the UK to biotechnology pg 28–41. In: ‘Biotechnology in public: a review of research’ (Ed. J Durant), Science Museum for the European Foundation of Biotechnology, London

  29. McKay LL & Baldwin KA (1990) Applications for biotechnology: present and future improvements of lactic acid bacteria. FEMS Microbiol. Rev. 87: 3–14

  30. Overbeeke N, Hughes S & Fellinger A (1989) Unilever Patent WO-A-91/00920

  31. Osinga KA, Bendeker RF, v.d. Plaat JB & de Hollander JA (1988) Gist Brocades patent application EP A 03 06107 A2

  32. Rood JI & Cole ST (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55: 621–648

  33. Smelt JPPM (1980) Heat resistance of Clostridium botulinum in acid ingredients and its signification for the safety of chilled foods. Thesis. Utrecht University, The Netherlands

  34. Smink GCJ & Hamstra AM (1995) Research into consumers needs to be informed about the use of biotechnology in foods. SWOKA report 176

  35. Tannock GW (1990) The micro-ecology of lactobacilli in habiting the gastrointestinal tract. In Advances in Microbial Ecology (Marshall KC ed.) 147–171, Plenum Press, New York

  36. Tannock GW, Fuller R, Smith SL & Hall MA (1990) Plasmid profiling of members of the family Enterobacteriaceae, lactobacilli and bifidobacteria to study the transmission of bacteria from mothers to infants. J. Clin. Microbiol. 28: 1225–1228

  37. Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA & Klaenhammer TR (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100-63. Plasmid 31: 60–71

  38. Teuber M (1990) Production and use of chymosin from genetically altered microorganisms. Lebensm. Ind. Milchwirtsch. 35: 1118–1123

  39. Van den Berg DJC, Smits A, Pot B, Ledeboer AM, Kersters K, Verbakel JMA & Verrips CT (1993) Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections. Food Biotechnol. 7: 189–205

  40. Van den Berg JA, van der Laken KJ, van Ooyen AJJ, Renniers TCHM, Rietveld K, Schaap A, Brake AJ, Schultz K, Moyer D, Richman M & Shuster JR (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8: 135–139

  41. Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12: 221–238

  42. Verrips CT (1991) Biotechnology for safe and wholesome foods. Food Biotechnol. 5: 347–364

  43. Verrips CT (1995) Structured Risk Assessment of rDNA Products and Consumer Acceptance of These Products. In: Biotechnology (H.J. Rehm and G. Reed Editors), Volume 12 Legal, Economic and ethical dimensions (pp 157–196); VCH, Weinheim.

  44. Vogel RF, Becke-Schmid M, Entgens P, Gaier W & Hammes WP (1992) Plasmid transfer and segregation in Lactobacillus curvatus LTH1432 in vitro and during sausage fermentation. System. Appl. Microbiol. 15: 129–136

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verrips, C.T., van den Berg, D.J.C. Barriers to application of genetically modified lactic acid bacteria. Antonie van Leeuwenhoek 70, 299–315 (1996). https://doi.org/10.1007/BF00395938

Download citation

Key words

  • lactic acid bacteria
  • rDNA technology
  • risk assessment and consumer acceptance