Antonie van Leeuwenhoek

, Volume 70, Issue 2–4, pp 223–242

Metabolic engineering of sugar catabolism in lactic acid bacteria

  • Willem M. de Vos


Lactic acid bacteria are characterized by a relatively simple sugar fermentation pathway that, by definition, results in the formation of lactic acid. The extensive knowledge of traditional pathways and the accumulating genetic information on these and novel ones, allows for the rerouting of metabolic processes in lactic acid bacteria by physiological approaches, genetic methods, or a combination of these two. This review will discuss past and present examples and future possibilities of metabolic engineering of lactic acid bacteria for the production of important compounds, including lactic and other acids, flavor compounds, and exopolysaccharides.

Key words

Lactococcus lactis Streptococcus thermophilus metabolism oxygen lactose pyruvate diacetyl polysaccharides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams RM, Youas S, Mainzer SE, Moon K, Palombella AL, Estell DA, Power SD & Schmidt BF (1994) Characterization of two cold-sensitive mutants of the β-galactosidase from Lactobacillus delbrueckii susp. bulgaricus. J. Biol. Chem. 269: 5666–5672Google Scholar
  2. Alpert CA & Chassy B (1990) Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific Enzyme II of the phosphotransferase system of Lactobacillus casei: Evidence that a cysteine residue is essential for sugar phosphorylation. J. Biol. Chem. 265: 22561–22570Google Scholar
  3. Anderson DG & McKay (1984) In vivo cloning of lac genes in Streptocococus lactis ML3. Appl. Environ. Microbiol. 47: 245–249Google Scholar
  4. Archibald FS & Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146: 928–936Google Scholar
  5. Bernard N, Johnson K, Ferain T, Garmyn D, Hols P, Holbrook JJ & Delcour J (1994) NAD+-dependent D-2-hydroxyisocaproate dehydrogenase of Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur. J. Biochem. 224: 439–446Google Scholar
  6. Benson KK, Godon JJ, Renault P, Griffin HG & Gasson MJ (1996) Effect of ilvBN-encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl. Microbiol. Biotechnol. 45: 107–111Google Scholar
  7. Boyd DA, Cvitkovitch DG & Hamilton IR (1994) Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptocococus mutants. Infect. Immunol. 62: 1156–1165Google Scholar
  8. Bouffard GG, Rudd KK & Adhya SL (1994) Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J. Mol. Biol. 244: 269–278Google Scholar
  9. Bocker G, Stolz P & Hammes (1994) Progress in sourdough fermentation. In: Lactic 94 (Novel G & Le Querler) pp. 133–143. Adria Normandie and University of Caen, FranceGoogle Scholar
  10. Catzeddu P, Vaughan EE, Deiana P & de Vos WM (1996) Transcriptional regulation and mutations that activate expression of the galactose operon in Streptococcus thermophilus. (Submitted)Google Scholar
  11. Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46: 269–280Google Scholar
  12. Cerning J (1990) Extracellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113–130Google Scholar
  13. Chen A, Hillman JD & Duncan M (1994) L-(+)-Lactate dehydrogenase deficiency is lethal in Streptococcus mutans. J. Bacteriol. 76: 1542–1545Google Scholar
  14. Crow VL & Thomas (1984) Properties of a Streptococcus lactis strain that ferments lactose slowly. J. Bacteriol. 157: 28–34Google Scholar
  15. de Ruyter PGGA, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter IJ & de Vos WM (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J. Bacteriol. 178 (12) (in press)Google Scholar
  16. Deutscher J & Sauerwald H (1986) Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphotransferase-dependent phosphorylation catalyzed by enzyme I and HPR of the phosphotransferase system. J. Bacteriol. 166: 829–836Google Scholar
  17. Deutscher J, Kuster E, Bergstedt U, Charrier V & Hillen W (1995) Protein-kinase dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol. Microbiol. 15: 1049–1053Google Scholar
  18. De Vos WM & Gasson MJ (1989) Structure and expression of the Lactococcus lactis gene for phospho-β-galactosidase. J. Gen. Microbiol. 132: 331–340Google Scholar
  19. De Vos WM, Boerrigter I, van Rooijen RJ, Reiche B & Hengstenberg W (1990) Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J. Biol. Chem. 265: 22554–22560Google Scholar
  20. De Vos WM & Simons G (1994) Gene cloning and expression systems in lactococci. pp. 52–105, in: Genetics and Biotechnology of Lactic Acid Bacteria (Gasson MJ & de Vos WM, Eds.) Chapman & Hall, London, UKGoogle Scholar
  21. De Vos WM & Vaughan EE (1994) Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15: 217–237Google Scholar
  22. De Vos WM, Beerthuyzen MM, Luesink EL & Kuipers OP (1995) Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. Dev. Biol. Stand. 85: 617–627Google Scholar
  23. Doco T, Wieruzeski J.-M & Fournet B (1990) Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr. Res., 198: 313–321Google Scholar
  24. Driessen AJM, Poolman B, Kiewiet R & Konings WN (1987) Arginine transport in Streptococcus lactis is driven by a cationic exchanger. Proc. Natl. Acad. Sci. USA 84: 6093–6097Google Scholar
  25. Duncan MJ & Hillman JD (1991) DNA sequence and in vitro mutagenesis of the gene encoding the fructose 1,6 diphosphate-dependent L-(+)lactate dehydrogenase of Streptococcus mutans. Infect. Immunol. 59: 3930–3934Google Scholar
  26. Fahey RC, Brwon WC, Adams WB & Worsham MB (1978) Occurence of glutathione in bacteria. J. Bacteriol. 133: 1126–1129Google Scholar
  27. Fath MJ & Kolter R (1993) ABC exporters. Microbiol. Rev. 57: 995–1017Google Scholar
  28. Ferain T, Garmyn D, Bernard N, Hols P & Delcour J (1994) Lactobacillus plantarum ldhL gene: overexpression and deletion. J. Bacteriol. 176: 596–601Google Scholar
  29. Ferain T, Hobbs Jr JN, Richardson J, Bernard N, Garmyn D, Hols P, Allen NE & Delcour J C (1996a) Genetic analysis of vancomycin resistance in Lactobacillus plantarum: disruption of ldhD and ldhL genes. (Submitted)Google Scholar
  30. Ferain T, Schanck AN, Veiga da Cunha M & Delcour J (1996b) Distribution of end products from glucose and citrate metabolism in a Lactobacillis plantarum strain deficient for lactate dehydrogenase. (Submitted)Google Scholar
  31. Gagnon G, Vandeboncoeur C Levesque RC & Frenette M (1992) Cloning, sequencing and expression in Escherichia coli of the ptsI gene encoding enzyme I of the phosphoenolpyruvate: sugar phosphotransferase transport system from Streptococcus salivarius. Gene 121: 71–78Google Scholar
  32. Gagnon G, Vandeboncoeur C & Frenette M (1993) Phosphotransferase system of Streptococcus salivarius: characterization of the pstH gene and its product. Gene 136: 27–34Google Scholar
  33. Gasson MJ & de Vos WM (1994) Genetics and Biotechnology of Lactic Acid Bacteria. Chapmann & Hall, Glasgow, UKGoogle Scholar
  34. Gasson MJ, Benson K, Swindell S, Griffin H (1996) Metabolic engineering of the Lactococcus lactis diacetyl pathway. Le Lait 75: 33–40Google Scholar
  35. Garmyn D, Ferain T, Bernard N, Hols P, Holbrook J & Delcour (1995) Cloning, nucleotide sequence and transcriptional analysis of the L-lactate dehydrogenase gene from Pediococcus acidilactici. Appl. Environ. Microbiol. 61: 266–272Google Scholar
  36. Germond JE, Lapierre L, Delley M & Mollet B (1995) A new mobile genetic element in Lactobacillus delbrueckii subsp. bulgaricus. Mol. Gen. Genet. 248: 407–416Google Scholar
  37. Godon JJ, Delorme C, Bardowski J, Chopin MC, Ehrlich SD & Renault P (1993) Gene inactivation in Lactococus lactis: branched chain animo acid biosynthesis. J. Bacteriol. 175: 4383–4390Google Scholar
  38. Griffin HG, Swindell SR & Gasson (1992) Cloning, and sequence analysis of the gene encoding L-lactate dehydrogenase from Lactococcus lactis: evolutionary relationships between 21 diffrent LDH enzymes. Gene 122: 193–197Google Scholar
  39. Hammes WP, Bantleon A, Min S (1990) Lactic acid bacteria in meat fermentation. FEMS Microbiol. Rev. 87: 165–174Google Scholar
  40. Higuchi M, Shimada M, Matsumoto J, Yamamoto Y, Rhaman A & Kamio (1994) Molecular cloning and sequence analysis of the gene encoding the H2O2-forming NADH oxidase from Streptococcus mutans. Biosci. Biotech. Biochem. 58: 1603–1607Google Scholar
  41. Higuchi M, Matsumoto, Shimada M, Yamamoto Y & Kamio Y (1995) Occurrence of the NADH oxidases corresponding to H2O2-forming oxodase and H2O-forming oxidase among species of oral and non-oral streptococci. Oral. Microbial. Immunol. (in press)Google Scholar
  42. Hillman JD, Chen A, Duncan M & Lee SW (1994) Evidence that L-(+)-lactate dehydrogenase deficiency is lethal in Streptococcus mutans. Infect Immunol. 62: 60–64Google Scholar
  43. Hueck C & Hillen W (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?. Mol. Microbiol. 15: 395–401Google Scholar
  44. Hugenholtz J, Perdon L & Abee T (1993) growth and energy generation by Lactococcus lactis subsp. lactis biovar diacetylactis during citrate metabolism. Appl. Environ. Microbiol. 59: 4216–4222Google Scholar
  45. Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12: 165–178Google Scholar
  46. Hugenholtz J, Decates R, Simons G, Starreburg MJC & de Vos WM (1996) Increased ethanol production by metabolic engineering of Lactococcus lactis. (Submitted)Google Scholar
  47. Hutkins RW & Morris HA (1987) Carbohydrate metabolism by Streptococcus thermophilis: A review. J. Food Protect. 50: 876–884Google Scholar
  48. Hutkins RW, Morris HA & McKay LL (1985) Galactokinase activity in Streptococcus thermophilus. Appl. Environ. Microbiol. 50: 777–780Google Scholar
  49. Ingram LO, Eddy CK, MacKenzie KF, Conway T, Altherthum (1989) Genetics of Zymomonas mobilis and ethanol production. Dev. Ind. Microbiol. 30: 53–69Google Scholar
  50. Jensen PR, Michelsen O & Westerhoff HV (1993) Control analysis of the depedence of Escherichia coli physiology on the H+-ATPase. Proc. Natl. Acad. Sci. 90: 8068–8072Google Scholar
  51. Jensen PR, van der Gugten AA, van Heeswijk WC, Rohwer J, Molenaar D, van Workum M, Richard P, Teusink B, Bakker BM, Kholodenko BN & Westerhoff HV (1995) Hierarchies in control. J. Biol. Sys. 3: 139–144Google Scholar
  52. Kell DB & Westerhoff HV (1986) Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol. Rev. 39: 305–320Google Scholar
  53. Kim SF, Baek SJ & Pack MY (1991) Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene. Appl. Environ. Microbiol. 57: 2431–2417Google Scholar
  54. Konings WN, Lolkema JS & Poolman B (1995) The generation of metabolic energy by solute transport. Arch. Microbiol. 164: 235–242Google Scholar
  55. Knauf HJ, Vogel RF & Hammes WP (1992) Cloning, sequencing, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl. Environ. Microbiol. 58: 832–829Google Scholar
  56. Kochhar S, Chuar N & Hottinger H (1992) Cloning and overexpression of the the Lactobacillus bulgaricus NAD-dependent D-lactate dehydrogenase gene in Escherichia coli: purification and characterization of the recombinant protein. Biophys. Biochem. Res. Comm. 185: 705–712Google Scholar
  57. Kuster E, Luesink EJ, de Vos WM & Hillen W (1996) Immunoloical cross-reactivity to catabolite control protein CcpA from B. megaterium is found in many Gram-positive bacteria. FEMS Microbiol Lett, (in press)Google Scholar
  58. Kuipers OP, Beerthuyzen MM, de Ruyter PGGA, Luesink EJ & de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27229–27304Google Scholar
  59. Law J, Buist G, Haandrikman A, Kok J, Venema G & Leenhouts K (1995) A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J. Bacteriol. 177: 7011–7018Google Scholar
  60. Llanos RM, Hillier AJ & Davidson BE (1992) Cloning, nucleotide sequence, expression and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase from Lactococcus lactis. J. Bacteriol. 174: 6956–6964Google Scholar
  61. Llanos RM, Marin CJ, Hillier AJ & Davidson BE (1993) Identification of a novel operon in Lactococcus lactis encoding enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase and lactate dehydrogenase. J. Bacteriol. 175: 254–255Google Scholar
  62. Limsowtin GKY, Davey GP & Crow VL (1986) Effect of gene dosage on expression of lactose enzymes in Streptococcus lactis. N.Z. Dairy Sci. Technol. 21: 151–156Google Scholar
  63. Leong-Morgenthaler P, Zwahlen MC and Hottinger H (1991) Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved. J. Bacteriol. 173: 1951–1957Google Scholar
  64. Lerch H-P, Blocker H, Kallwas H, Hoppe J, Tsai H & Collins J (1989a) Cloning, sequencing and expression in Escherichia coli of the 2-D-hydroxycaproate dehydrogenase gene of Lactobacillus casei. Gene 78: 47–57Google Scholar
  65. Lerch H-P, Frank R H & Collins J (1989b) Cloning, sequencing and expression of the 2-D-hydrocxycaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. Gene 83: 263–270Google Scholar
  66. Lokman BC, Leer RJ, van Sorge R & Pouwels (1994) Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Mol. Gen. Genet. 245: 117–125Google Scholar
  67. London J (1990) Uncommon pathways of metabolsim among lactic acid bacteria. FEMS Microbiol. Rev. 87: 103–112Google Scholar
  68. Mainzer SE, Yoast S, Palombella A, Adams Silva S, Pooman B, Chassy BM, Biozet B & Schmidt BF (1990) Pathway engineering of Lactobacillus bulgaricus for improved yoghurt. pp. 41–54. In: R.C. Chandan (ed.) Yoghurt: Nutritional and Health Properties. National Yoghurt Association, Virginia, USGoogle Scholar
  69. Marugg JD, Goelling D, Stahl U, Ledeboer AM, Toonen MY, Verhue WM & Verrips CT (1994) Identification and characterization of the α-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar. diacetylactis. Appl. Environ. Microbiol. 60: 1390–1394Google Scholar
  70. Marugg JD, van Kranenburg R, Laverman P, Rutten GA & de Vos WM (1996) Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production in Lactococcus lactis. J. Bacteriol. 178: 1525–1531Google Scholar
  71. Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C & Konings WN (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J. Bacteriol. 178: 2178–2185Google Scholar
  72. Matsumoto J, Higichi M, Shimada M, Yamamoto Y & Y Kamio (1996) Molecular cloning and sequence analysis of the gene encoding the H2O-forming NADH oxidase gene from Streptococcus mutans. Biosci. Biotech. Biochem. 60: 39–43Google Scholar
  73. McKay LL & Baldwin KA (1974) Altered metabolism of Streptococcus lactis C2 deficient in lactate dehydrogenase. J. Dairy Sci. 57: 181–186Google Scholar
  74. Minowa T, Iwata S, Sakai H, Masaki H & Ohta T (1989) Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Gene 85: 161–168Google Scholar
  75. Mollet B & Delley M (1990) Spontaneous deletion formation within the β-galactosidase gene of Lactobacillus bulgaricus. J. Bacteriol. 172: 5670–5676Google Scholar
  76. Mollet B & Delley M (1991) A β-galactosidase deletion mutant of Lactobacillus bulgaricus reverts to an active enzyme by internal DNA sequence duplication. Mol. Gen. Genet. 227, 17–21Google Scholar
  77. Mollet B & Hottinger H (1992) Yoghurt contenant de microorganismes vivants. European Patent Application 0 518 096Google Scholar
  78. Nakyama K (1994) Nucelotide sequence of Streptococcus mutans superoxide dismutase gene and isolation of insertion mutants. J. Bacteriol. 174: 4928–4934Google Scholar
  79. Nakajima H, Hirota T, Toba T & Adachi S (1992) Structure of the extracellular polysacharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydr. Res. 224: 245–253Google Scholar
  80. Otto R, Lageveen RG, Veldkamp H & Konings (1980) Generation of an electrochemical proton gradient in membrane vesicles of Streptococcus cremoris. Proc. Natl. Acad. Sci. USA 77: 5502–5506Google Scholar
  81. Parker MW & Blake CCF (1988) Iron-and manganese-containig superoxide dismutates can be distinguished by analysis of their primary structures. FEBS Lett. 229: 377–382Google Scholar
  82. Parsonage D, Miller H, Ross RP & Claiborne A (1994) Purification and analysis of streptococcal NADH peroxidase expressed in Escherichia coli. J. Biol. Chem. 268: 3161–3167Google Scholar
  83. Pebay M, Holl A-C, Simonet J-M, Decaris B (1995) Characterization of the gor gene of the lactic acid bacterium Streptococcus thermophilus CNRZ368. Res. Microbiol. 146: 317–383Google Scholar
  84. Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter IJ & de Vos WM (1995) Metabolic engineering of Lactococcus lactis: Influence of the overproduction of α-acetolactate synthase in strains deficient in lactate dehyrogenase as a function of culture conditions. Appl. Environ. Microbiol. 61: 3967–3971Google Scholar
  85. Poolman B (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125–148Google Scholar
  86. Poolman B, Royer TJ, Mainzer SE & Schmidt B.F. (1989) Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phophotransferase systems. J. Bacteriol. 171: 244–253Google Scholar
  87. Poolman B, Royer TJ, Mainzer SE & Schmidt BF (1990) Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase. J. Bacteriol. 172: 4037–4047Google Scholar
  88. Poolman B, Knol J, Mollet B, Nieuwenhuis B & Sulter G (1995) Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Proc. Natl. Acad. Sci. USA 92: 778–782Google Scholar
  89. Poolman B, Knol J, van der Does C, Henderson PJF, Liang W-J, Leblanc G, Potcher T & Mus-Veteau I (1996) Cation and sugar selectivity determinants in a novel family of transport proteins. Mol. Microbiol. 19: 911–922Google Scholar
  90. Postma PW, Lengeler JW & Jacobson GR (1993) Phosphoenolpyruvate-dependent carbohydate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543–594Google Scholar
  91. Rauch PJG & de Vos WM (1992) Characterization of the novel nisin-sucrose cojugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174: 1280–1287Google Scholar
  92. Reizer J (1989) Regulation of sugar uptake ands efflux in grampositive bacteria. FEMS Microbiol. Rev. 63: 149–157Google Scholar
  93. Reizer J, Sutrina SL, Saier MH, Stewart GC, Peterkofsy A & Reddy P (1989) Mechanistic and physiological consequence of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate: sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J 8: 2111–2120Google Scholar
  94. Reeves PR (1994) Biosynthesis and asembly of lipopolysaccharide. New. Compr. Biochem. 27: 281–314Google Scholar
  95. Rosey EL and Stewart G (1993) Nucelotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose-6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. J. Bacteriol. 174: 6159–6170Google Scholar
  96. Ross RP & Claiborne A (1991) Cloning, sequence and overexpression of the NADH peroxidase from Streptococcus faecalis 10C1. Structural relationship with the flavoprotein disulfide reductases. J. Mol. Biol. 221: 857–871Google Scholar
  97. Ross RP & Claiborne A (1992) Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. J. Mol. Biol. 227: 658–671Google Scholar
  98. Ross RP & Claiborne A (1996) Analysis of the OxyR-binding site associated with the NADH peroxidase gene in Enterococcus faecalis 10C1. (Submitted)Google Scholar
  99. Roy DG, Klaenhammer TR & Hassan HM (1993) Cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lactococcus lactis and Lactobacillus gasseri (1994) Mol. Gen. Genet. 239: 33–40Google Scholar
  100. Russell RRB, Adus-Opoku J, Sutcliffe IC, Tao L & Ferretti JJ (1992) A binding-protein dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 4631–4637Google Scholar
  101. SaierJr MH, Ye JJ, Klinke S & Nino E (1996) Identification of an anaerobically induced phosphoenolpyruvate dependent fructosespecific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J. Bacteriol. 178: 314–316Google Scholar
  102. Sato Y, Poy F, Jacobson GR & Kuramitsu (1989) Characterization and sequence analysis of the scrA gene encoding enzyme IIscr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J. Bacteriol. 171: 263–271Google Scholar
  103. Sanders JW, Leenhouts K, Haandrikman AJ, Venema G & Kok J (1995) Stress response in Lactococcus lactis: Cloning, expression analysis and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177: 5254–5260Google Scholar
  104. Sasaki T, Ito Y & Sasaki Y (1993a) Electrotransformation of Lactoibacillus delbrieckii subsp. bulgaricus. In: W.M. de Vos, J. Huis in ‘t Veld & B. Poolman (Eds.) FEMS Microbiol. Rev. 12: P8Google Scholar
  105. Sasaki Y, Ito Y & Sasaki T (1993b) Gene conversion in transconjugants of Lactobacillus delbruecki subsp. bulgaricus using pAMß1 as an integration vector. In: W.M. de Vos, J. Huis in t Veld & B. Poolman (Eds.) FEMS Microbiol. Rev. 12:P9Google Scholar
  106. Schroeder CJ, Robert C, Lenzen G, McKay LL, and Mercienier A (1991) Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus ß-galactosidase sequences. J. Gen. Microbiol. 137: 369–380Google Scholar
  107. Smart JB & Thomas TD (1987) Effect of oxygen on lactose metabolism in lactic streptococci. Appl. Environ. Microbiol. 53: 533–541Google Scholar
  108. Schmidt BF, Adams RM, Requadt C, Power S & Mainzer SE (1989) Expression and nucleotide sequence of the Lactobacillus bulgaricus ß-galactosidase gene cloned in Escherichia coli. J. Bacteriol. 171: 625–635Google Scholar
  109. Snoep JL (1992) Regulation of pyruvate catabolism in Enterococcus faecalis. A molecular aproach to physiology. Academic Thesis, University of Amsterdam, AmsterdamGoogle Scholar
  110. Snoep JL, Teixeira de Mattos MJ & Neijssel OM (1991) Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostrat cultures of Enterococcus faecalis NTC 775. FEMS Microbiol. Lett. 81: 63–66Google Scholar
  111. Snoep MJ, Teieira de Mattos MJ, Starrenburg MJC & Hugenholtz J (1992) Isolation, characterization and physiological role of the pyruvate dehydrogenase complex and α-acetolactate synthase of Lactococcus lactis subsp. lactis var. diacetylactis. J. Bacteriol. 174: 4838–4841Google Scholar
  112. Stahle T, Ahmed SA, Claiborne A & Schulz GE (1991) The structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution. J. Mol. Biol. 221: 1325–1344Google Scholar
  113. Stucky K, Schich J, Klein JR, Heinrich B & Plapp R (1996) Characterization of pepRI, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM729. FEMS Microbiol. Lett. 136: 63–69Google Scholar
  114. Stingele F, Neeser J-R & Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178: 1680–1690Google Scholar
  115. Stingele F & Mollet B (1995) Homologous integration and transposition to identify genes involved in the production of exopolysacharides in Streptococcus thermophilus. Dev. Biol. Stand. 85: 487–493Google Scholar
  116. Sutherland IW (1972) Bacterial exopolysaccharides. Adv. Microbiol. Physiol. 8: 143–212Google Scholar
  117. Taguchi H & Ohta T (1991) D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. J. Biol. Chem. 266: 12588–12594Google Scholar
  118. Tao L, Sutcliffe IC, Russell RRB & Ferretti JJ (1995) Regulation of the multiple sugar metabolism operon in Streptococcus mutans. Dev. Biol. Stand. 85: 434–350Google Scholar
  119. Thomas TD & Crow VF (1984) Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. Appl. Environ. Microbiol. 48: 186–191Google Scholar
  120. Thompson J (1987) Regulation of sugar uptake and metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 46: 221–231Google Scholar
  121. Thompson J, Chassy BM & Egan W (1985) Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities. J. Bacteriol. 162: 217–223Google Scholar
  122. Thompson J & Gentry-Weeks CR (1994) Metabolism des sucres par les bacteries lactiques. In: Bacteries Lactiques (de Roissart H & Luquest FM Eds) pp. 239–290. Lorica, Uriage, FranceGoogle Scholar
  123. Van Dam K, van der Vlag J, Kholodenko BN & Westerhof HV (1993) The sum of the control coefficients of all enzymes on the flux control through a group-tranfer pathway can be as high as two. Eur. J. Biochem. 212: 791–799Google Scholar
  124. Van Kranenburg R, Marugg JD, van Swam II, Willem NJ & de Vos WM (1996) Molecular characterization of the plasmid-located eps gene cluster coding for exopolysaccharide biosynthesis in Lactococcus lactis. (Submitted)Google Scholar
  125. van Rooijen RJ, van Schalkwijk S & de Vos WM (1991) Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem. 266: 7176–7181Google Scholar
  126. Van Rooijen RJ, Gasson MJ & de Vos WM (1992) Characterization of the promoter of the Lactococcus lactis lactose operon: Contribution of flanking sequences and LacR repressor to its activity. J. Bacteriol. 174: 2273–2280Google Scholar
  127. Van Rooijen RJ & de Vos WM (1990) Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J. Biol. Chem. 265: 18499–18503Google Scholar
  128. Van Rooijen RJ, Dechering KJ, Wilmink CNJ & de Vos WM (1993) Lysines 72, 80, 213, and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression. Protein Eng. 6: 208–215Google Scholar
  129. Vaughan EE, David S & de Vos WM (1996) The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators. Appl. Environ. Microbiol. 62: 1547–1582Google Scholar
  130. Wagner E, Gotz F & Bruckner R (1993) Cloning and characterization of the scrA gene encoding the sucrose-specific enzyme II of the phosphotransferase systen of Staphylococcus carnosus Google Scholar
  131. Ye JJ, Reizer J, Cui X & SaierJr. MJ (1994) Inhibition of the phosphoeneolpyruvate: lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J. Biol. Chem. 269: 11837–11844Google Scholar
  132. Ye JJ & SaierJr. MJ (1995) Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis Proc. Natl. Acad. Sci. USA 92: 417–421Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Willem M. de Vos
    • 1
    • 2
  1. 1.Department of Biophysical ChemistryNIZOEdeThe Netherlands
  2. 2.Department of MicrobiologyWageningen Agricultural UniversityThe Netherlands
  3. 3.NIZOEdeThe Netherlands

Personalised recommendations