Antonie van Leeuwenhoek

, Volume 70, Issue 2–4, pp 187–221 | Cite as

The proteotytic systems of lactic acid bacteria

  • Edmund R. S. Kunji
  • Igor Mierau
  • Anja Hagting
  • Bert Poolman
  • Wil N. Konings
Metabolism

Abstract

Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.

Key words

proteolysis proteinase peptidase peptide transport lactococci lactobacilli casein hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora G & Lee BH (1992) Purification and characterization of aminopeptidase from Lactobacillus casei subsp. casei LLG. J. Dairy Sci. 75: 700–710Google Scholar
  2. Atlan D, Gilbert C, Blanc B & Portalier R (1994) Cloning, sequencing and characterizatioon of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrückii subsp. bulgaricus CNRZ397. Microbiology 140: 527–535Google Scholar
  3. Atlan D, Laloi P & Portalier R (1990) X-prolyl-dipeptidyl aminopeptidase of Lactobacillus delbrückii subsp. bulgaricus: Characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol. 56: 2174–2179Google Scholar
  4. Baankreis R (1992) The role of lactococcal peptidases in cheese ripening. University of Amsterdam, Ph.D. ThesisGoogle Scholar
  5. Baankreis R & Exterkate R (1991) Characterization of a peptidase from Lactococcus lactis ssp. cremoris HP that hydrolyses diand tripeptides containing proline or hydrophobic residues as the aminoterminal amino acid. Syst. Appl. Microbiol. 14: 317–323Google Scholar
  6. Bacon CL, Jennings PV, Fhaolain IN & O'Cuinn G (1994) Purification and characterization in an aminopeptidase A from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy J. 4: 503–519.Google Scholar
  7. Bacon CL, Wilkinson M, Jennings PV, Fhaoláin IN & O'Cuinn G (1993) Purification and characterization of an aminotripeptidase from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy J. 3: 163–177Google Scholar
  8. Benfeldt C, Larsen LB, Rasmussen JT, Andreasen PA & Petersen TE (1994) Isolation and characterization of plasminogen and fragments of plasminogen from bovine milk. Int. Dairy J. 4Google Scholar
  9. Blanc B, Laloi P, Atlan D, Gilbert C & Portalier R (1993) Two cell-wall-associated aminopeptidases from Lactobacillus helveticus and the purification and characterization of APII from strain ITGL1. J. Gen. Microbiol. 139: 1441–1448Google Scholar
  10. Bockelmann W, Fobker M & Teuber M (1991) Purification and characterization of the X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus acidophilus. Int. Dairy J. 1: 51–66.Google Scholar
  11. Bockelmann W, Monnet V, Geis A, Teuber M & Gripon J-C (1989) Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. Appl. Microbiol. Biotechnol. 31: 278–282Google Scholar
  12. Bockelmann W, Schulz Y & Teuber M (1992) Purification and characterization of an aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus. Int. Dairy J. 2: 95–107Google Scholar
  13. Booth M, Phaoláin IN, Jennings PV & O'Cuinn G (1990a) Purification and characterization of a post-proline dipeptidyl aminopeptidase from Streptococcus cremoris AM2. J Dairy Res. 57: 89–99Google Scholar
  14. Booth M, Jennings PV, Fhaoláin IN & O'Cuinn G (1990b) Prolidase activity of Lactococcus lactis subsp. cremoris AM2: partial purification and characterization. J. Dairy Res. 57: 245–254Google Scholar
  15. Bosman BW, Sasaki M, Iwasaki T & Tan PST (1996) Localization of proteolytic enzymes in Lactobacillus helveticus SBT 2171. Manuscript in preparationGoogle Scholar
  16. Bosman BW, Tan PST & Konings WN (1990) Purification and characterization in a tripeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 56: 1839–1843Google Scholar
  17. Bhowmik T, Fernández L & Steele JL (1993) Gene replacement in Lactobacillus helveticus. J. Bacteriol. 175: 6341–6344Google Scholar
  18. Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G & Haandrikman AJ (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 177: 1554–1563Google Scholar
  19. Chapot-Chartier M-P, Deniel C, Rousseau M, Vassal L & Gripon J-C (1993) Cloning and sequencing of pepC, a cysteine aminopeptidase gene from Lactococcus lactis subsp. cremoris AM2. Appl. Environ. Microbiol. 59: 330–333Google Scholar
  20. Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev. 12: 21–38Google Scholar
  21. Christensen JE, Lin D, Palva A & Steele JL (1995) Sequence analysis, distribution and expression of an aminopeptidase N-encoding gene from Lactobacillus helveticus CNRZ32. Gene 155: 89–93Google Scholar
  22. Christensen JE & Steele JL (1996) Characterization of peptidase-deficient Lactobacillus helveticus derivatives. Unpublished resultsGoogle Scholar
  23. Coolbear T, Pillidge CJ & Crow VL (1994) The diversity of potential cheese ripening characteristics of lactic acid starter bacteria: 1. resistance to cell lysis and levels and cellular distribution of proteinase activities. Int. Dairy J. 4: 697–721Google Scholar
  24. Coolbear T, Reid JR & Pritchard GG (1992) Stability and specificity of the cell wall-associated proteinase from Lactococcus lactis subsp. cremoris H2 released by treatment with lysozyme in the presence of calcium ions. Appl. Environ. Microbiol. 58: 3263–3270Google Scholar
  25. Crow VL, Holland R, Pritchard GG & Coolbear T (1994) The diversity of potential cheese ripening characteristics of lactic acid starter bacteria: 2. The elvels and subcellular distribution of peptidase and esterase activities. Int. Dairy J. 4: 723–742Google Scholar
  26. Detmers & Kunji, unpublished resultsGoogle Scholar
  27. De Vos WM & Siezen RJ (1994) Engineering pivotal proteins for lactococcal proteolysis. In: Andrews AT & Varley J (Eds) Biochemistry of Milk Products, pp 56–71. Royal Society of Chemistry, Cambridge, EnglandGoogle Scholar
  28. Driessen AJM (1994) How proteins cross the bacterial cytoplasmic membrane. J. Membr. Biol. 142: 145–159Google Scholar
  29. Dudley EG, Husgen AC, He W & Steele JL (1996) Sequencing. distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32. J. Bacteriol. in pressGoogle Scholar
  30. Dudley EG & Steele JL (1994) Nucleotide sequence and distribution of the pepPN gene from Lactobacillus helveticus CNRZ32. FEMS Microbiol. Lett. 119: 41–46Google Scholar
  31. Dunten P & Mowbray SL (1995) Crystal structure of the dipeptide binding protein from Escherichia coli involved in active transport and chemotaxis. Prot. Sci. 4: 2327–2334Google Scholar
  32. Erra-Pujada M, Mistou MY & Gripon J-C (1995) Construction et étude d'une souche de Lactococcus lactis dont le gène pepC n'est plus fonctionnel. 7ème Colloque du Club des Bactéries Lactiques. p 8Google Scholar
  33. Exterkate FA (1977) Pyrrolidone carboxylyl peptidase in Streptococcus cremoris: dependence on an interaction with membrane components. J. Bacteriol. 129: 1281–1288Google Scholar
  34. (1984) Location of peptidases outside and inside the membrane of Streptococcus cremoris. Appl. Environ. Microbiol. 47: 177–183Google Scholar
  35. (1985) A dual-directed control of cell wall proteinase production in Streptococcus cremoris AM1: a possible mechanism of regulation during growth in milk. J Dairy Sci. 68: 562–571Google Scholar
  36. Exterkate FA, Alting AC & Bruinenberg PG (1993) Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Appl. Environ. Microbiol. 59: 3640–3647Google Scholar
  37. Exterkate FA, De Jong M, De Veer GJCM & Baankreis R (1992) Location and characterization of aminopeptidase N in Lactococcus lactis subsp. cremoris HP. Appl. Microbiol. Biotechnol. 37: 46–54Google Scholar
  38. Exterkate FA & De Veer GJCM (1987a) Complexity of the native cell wall proteinase of Lactococcus lactis subsp. cremoris HP and purification of the enzyme. System. Appl. Microbiol. 9: 183–191Google Scholar
  39. (1987b) Optimal growth of Streptococcus cremoris HP in milk is related to β-and κ-casein degradation. Appl. Microbiol. Biotechnol. 25: 471–475Google Scholar
  40. (1987c) Purification and properties of a membrane- bound aminopeptidase A from Streptococcus cremoris. Appl. Environ. Microbiol. 53: 577–583Google Scholar
  41. Fang G & Kunji ERS (1996) Unpublished resultsGoogle Scholar
  42. Fayard B & Mierau I (1996) Dipeptidase (pepV) from Lactococcus lactis subsp. cremoris. Unpublished resultsGoogle Scholar
  43. Fenster KM, Chen YS & Steele JL (1996) Endopeptidases from Lactobacillus helveticus CNRZ32. Unpublished resultsGoogle Scholar
  44. Fernández L, Bhowmik T & Steele JL (1994) Characterization of the Lactobacillus helveticus CNRZ32 pepC gene. Appl. Environ. Microbiol. 60: 333–336Google Scholar
  45. Foucaud C, Kunji ERS, Hagting A, Richard J, Konings WN, Desmazeaud M & Poolman B (1995) Specificity of peptide transport systems in Lactococcus lactis: Evidence for a third system which transports hydrophobic di- and tripeptides. J. Bacteriol. 177: 4652–4657Google Scholar
  46. Foucaud C & Poolman B (1992) Lactose transport protein of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. J. Biol. Chem. 267: 22087–22094Google Scholar
  47. Geis A, Bockelmann W & Teuber T (1985) Simultaneous extraction and purification of a cell wall-associated peptidase and β-casein specific protease from Streptococcus cremoris AC1. Appl. Microbiol. Biotechnol. 23: 79–84Google Scholar
  48. Gilbert C, Atlan D, Blanc B & Portalier R (1994) Proline iminopeptidase from Lactobacillus delbrückii subsp. bulgaricus CNRZ397: purification and characterization. Microbiology 140: 537–542Google Scholar
  49. Gilbert C, Atlan D, Blanc B, Portalier R, Germond GJ, Lapierre L & Mollet B (1996) A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrückii subsp. bulgaricus. Submitted for publicationGoogle Scholar
  50. Grufferty MB & Fox PF (1988) Milk alkaline proteinase. J. Dairy Res. 4: 609–630Google Scholar
  51. Haandrikman AJ (1994) Pyrrolidone carboxylyl peptidase (Pcp) in L. lactis subsp. cremoris. Unpublished resultsGoogle Scholar
  52. Haandrikman AJ, Kok J, Laan H, Soemitro S, Ledeboer AM, Konings WN & Venema G (1989) Identification of a gene required for the maturation of an extracellular serine proteinase. J. Bacteriol. 171: 2789–2794Google Scholar
  53. Haandrikman AJ, Kok J & Venema G (1991) Lactococcal proteinase maturation protein PrtM is a lipoprotein. J. Bacteriol. 173: 4517–4525Google Scholar
  54. Habibi-Najafi MB & Lee BH (1994) Purification and characterization of X-prolyl dipeptidyl peptidase from Lactobacillus casei subsp. casei LLG. Appl. Microbiol. Biotechnol. 42: 280–286Google Scholar
  55. Hagting A, Kunji ERS, Leenhouts KJ, Poolman B & Konings WN (1994) The di- and tripeptide transport protein of Lactococcus lactis. J. Biol. Chem. 269: 11391–11399Google Scholar
  56. Hagting A. Unpublished resultsGoogle Scholar
  57. Hellendoorn MA & Mierau I (1996) PepO2 of Lactococcus lactis subsp. cremoris. Unpublished resultsGoogle Scholar
  58. Higgins CF (1992) ABC transporters: from microorganisms to man. Ann. Rev. Cell. Biol. 8: 67–113Google Scholar
  59. Holck A & Næs H (1992) Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO151. J. Gen. Microbiol. 138: 1353–1364Google Scholar
  60. Holt C & Sawyer L (1988) Primary and predicted secondary structures of the caseins in relation to their biological function. Protein Engineer. 2: 251–259Google Scholar
  61. Hugenholtz H, Van Sinderen D, Kok J & Konings WN (1987) Cell wall-associated proteases of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 53: 853–859Google Scholar
  62. Hwang I-K, Kaminogawa S & Yamauchi K (1981) Purification and properties of dipeptidase from Streptococcus cremoris. Agric. Biol. Chem. 45: 159–165Google Scholar
  63. l'Anson K, Movahedi S, Griffin HG, Gasson MJ & Mulholland F (1995) A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiology 141: 2873–2881Google Scholar
  64. Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP & Konings WN (1995a) The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. J. Bacteriol. 177: 3472–3478Google Scholar
  65. Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon J-C & Richard J (1995b) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol. 61: 3024–3030Google Scholar
  66. Kaminogawa S, Azuma N, Hwang I-K, Suzuki Y & Yamauchi K (1984) Isolation and characterization of a prolidase from Streptococcus cremoris-H61. Agric. Biol. Chem. 48: 3035–3040Google Scholar
  67. Khalid NM & Marth EH (1990a) Partial purification and characterization of an aminopeptidase from Lactobacillus helveticus CNRZ32. System. Appl. Microbiol. 13: 311–319Google Scholar
  68. (1990b) Purification and partial characterization of a prolyl-dipeptidyl aminopeptidase from Lactobacillus helveticus CNRZ32. Appl. Environ. Microbiol. 56: 381–388Google Scholar
  69. Kiefer-Partsch B, Bockelmann W, Geis A & Teuber M (1989) Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris. Appl. Microbiol. Biotechnol. 31: 75–78Google Scholar
  70. Kiwaki M, Ikemura H, Shimizu-Kadota M & Hirashima A (1989) Molecular characterization of a cell wall-associated proteinase gene from Streptococcus lactis NCDO763. Mol. Microbiol. 3: 359–369Google Scholar
  71. Klein JR, Dick A, Schick J, Matern HT, Henrich B & Plapp R (1995) Molecular cloning and DNA sequence analysis of pepL, a leucyl aminopeptidase gene from Lactobacillus delbrückii subsp. lactis DSM7290. Eur. J. Biochem. 228: 570–578Google Scholar
  72. Klein J-R, Henrich B & Plapp R (1994a) Cloning and nucleotide sequence analysis of the Lactobacillus delbrückii ssp. lactis DSM7290 cysteine aminopeptidase gene pepC. FEMS Microbiol. Lett. 124: 291–300Google Scholar
  73. Klein J-R, Klein U, Schad M & Plapp R (1993) Cloning, DNA sequence analysis and partial characterization of pepN, a lysyl aminopeptidase from Lactobacillus delbrückii subsp. lactis DSM7290. Eur. J. Biochem. 217: 105–114Google Scholar
  74. Klein J-R, Schmidt U & Plapp R (1994b) Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepI, from Lactobacillus delbrückii subsp. lactis DSM7290. Microbiology 140: 1133–1139Google Scholar
  75. Kojic M, Fira D, Banina A & Topisirovic L (1991) Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. Appl. Environ. Microbiol. 57: 1753–1757Google Scholar
  76. Kok J (1990) Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol. Rev. 87: 15–42Google Scholar
  77. Kok J & De Vos WM (1994) The proteolytic system of lactic acid bacteria. In: Gasson M & De Vos W (Eds) Genetics and Biotechnology of Lactic Acid Bacteria. pp 169–210. Blackie and Professional, London, EnglandGoogle Scholar
  78. Kok J, Leenhouts KJ, Haandrikman AJ, Ledeboer AM & Venema G (1988) Nucleotide sequence of the cell wall-associated proteinase gene of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 231–238Google Scholar
  79. Konings WN, Poolman B & Driessen AJM (1989) Bioenergetics and solute transport in Lactococci. CRC Crit. Rev. Microbiol. 16: 419–476Google Scholar
  80. Kontinen VP, Saris P & Sarvas M (1991) A gene (prsA) of Bacillus subtilis is involved in a novel, late stage of protein export. Mol. Microbiol. 5: 1273–1283Google Scholar
  81. Kuipers OP, Rollema HS, De Vos WM & Siezen RJ (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis; requirement of expression of the nisA and nisI genes for producer immunity. Eur. J. Biochem. 216: 281–291Google Scholar
  82. Kunji ERS, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B & Konings WN (1995) Transport of β-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569–1574Google Scholar
  83. Kunji ERS, Mierau I, Poolman B, Konings WN, Venema G & Kok J (1996) Fate of peptides in peptidase mutants of Lactococcus lactis. Mol. Microbiol. (submitted)Google Scholar
  84. Kunji ERS, Smid EJ, Plapp R, Poolman B & Konings WN (1993) Ditripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. J. Bacteriol. 175: 2052–2059Google Scholar
  85. Laan H, Bolhuis H, Poolman B, Abee T & Konings WN (1993) Regulation of proteinase synthesis in Lactococcus lactis. Acta Biotechnol. 13: 95–101Google Scholar
  86. Laan H & Konings WN (1989) The mechanism of proteinase release from Lactococcus lactis subspecies cremoris Wg2. Appl. Environ. Microbiol. 55: 3103–3106Google Scholar
  87. Laloi P, Atlan D, Blanc B, Gilbert C & Portalier R (1991) Cell-wall-associated proteinase of Lactobacillus delbrückii subsp. bulgaricus CNRZ397: differential extraction, purification and properties of the enzyme. Appl. Microbiol. Biotechnol. 36:, 196–204Google Scholar
  88. Law BA (1977) Dipeptide utilization by starter streptococci. J. Dairy Res. 44: 309–317Google Scholar
  89. (1979) Extracellular peptidases in group N streptococci used as cheese starters. J. Appl. Bacteriol. 46: 455–463Google Scholar
  90. Law BA & Kolstad J (1983) Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek 49: 225–245Google Scholar
  91. Lazdunski AM (1989) Peptidases and proteases of Escherichia coli and Salmonella typhimurium. FEMS Microbiol. Rev. 63: 265–276Google Scholar
  92. Leenhouts (1991) Ph.D. Thesis, University of GroningenGoogle Scholar
  93. Leenhouts KJ, Buist G, Bolhuis A, Ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G & Kok J (1996) A general system for generating unlabelled gene-replacements in the bacterial chromosome. (Manuscript in preparation)Google Scholar
  94. Lloyd RJ & Pritchard GG (1991) Characterization of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. lactis H1. J. Gen. Microbiol. 137: 49–55Google Scholar
  95. Mars I & Monnet V (1995) An aminopeptidase P from Lactococcus lactis with orginal specificity. Biochim. Biophys. Acta 1243: 209–215Google Scholar
  96. Martín-Hernández MC, Alting AC & Exterkate FA (1994) Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Appl. Microbiol. Biotechnol. 40: 828–834Google Scholar
  97. Marugg JD, Meijer W, Van Kranenburg R, Laverman P, Bruinenberg PG & De Vos WM (1995) Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: Control of trascription by specific dipeptides. J. Bacteriol. 177: 2982–2989Google Scholar
  98. Mayo B, Kok J, Bockelman W, Haandrikman A, Leenhouts KJ & Venema G (1993) Effect of X-prolyl dipeptidyl aminopeptidase deficiency on Lactococcus lactis. Appl. Environ. Microbiol. 5: 2049–2055Google Scholar
  99. Mayo B, Kok J, Venema K, Bockelman W, Teuber M, Reinke H & Venema G (1991) Molecular cloning and sequencing analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57: 38–44Google Scholar
  100. Meijer WC, Looijestijn E, Marugg JD & Hugenholtz J (1995) Expression and release of proteolytic starter enzymes during cheese ripening. 7th European Congress on Biotechnology. Poster MEP23Google Scholar
  101. Meyer-Barton EC, Klein JR, Imam M & Plapp R (1993) Cloning and sequence analysis of the X-prolyl-dipeptidyl-aminopeptidase gene (pepX) from Lactobacillus delbrückii ssp. lactis DSM7290. Appl. Microbiol. Biotechnol. 40: 82–89Google Scholar
  102. Mierau I, Haandrikman AJ, Velterop O, Tan PST, Leenhouts KL, Konings WN, Venema G & Kok J (1994) Tripeptidases gene (pepT) of Lactococcus lactis: Molecular cloning and nucleotide sequencing of pepT and construction of a chromosomal deletion mutant. J. Bacteriol. 176: 2854–2861Google Scholar
  103. Mierau I, Kunji ERS, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G & Kok J (1996) Multiple peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. (Submitted)Google Scholar
  104. Mierau I, Tan PST, Haandrikman AJ, Kok J, Leenhouts KJ, Konings WN & Venema G (1993) Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. J. Bacteriol. 175: 2087–2096Google Scholar
  105. Mills OE & Thomas TD (1981) Nitrogen sources for growth of lactic streptococci in milk. N.Z. J. Dairy Sci. Technol. 16: 43–55Google Scholar
  106. Mistou M-Y, Rigolet P, Chapot-Chartier M-P, Nardi M, Gripon J-C & Brunie S (1994) Crystallization and preliminary X-ray analysis of PepC, a thiol aminopeptidase from Lactococcus lactis homologous to bleomycin hydrolase. J. Mol. Biol. 237: 160–162Google Scholar
  107. Miyakawa H, Kobayashi S, Shimamura S & Tomita M (1992) Purification and characterization of an aminopeptidase from Lactobacillus helveticus LHE-511. J. Dairy Sci. 75: 27–35Google Scholar
  108. Molenaar D, Hagting A, Alkema H, Driessen AJM & Konings WN (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycne betaine in Lactococcus lactis. J. Bacteriol. 175: 5438–5444Google Scholar
  109. Momburg F, Roelse J, Howard JC, Butcher GW, Hämmerling GJ & Neefjes JJ (1994) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367: 648–651Google Scholar
  110. Monnet V, Bockelman W, Gripon J-C & Teuber M (1989) Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. Appl. Microbiol. Biotechnol. 31: 112–118Google Scholar
  111. Monnet V, LeBars D & Gripon J-C (1986) Specifity of a cell well proteinase from Streptococcus lactis NCDO 763 towards bovine β-casein. FEMS Microbiol. Lett. 36: 127–131Google Scholar
  112. (1987) Purification and characterization of a cell wall proteinase from Streptococcus lactis NCDO 763. J. Dairy Res. 54: 247–255Google Scholar
  113. Monnet V, Ley JP & Gonzalez S (1992) Substrate specificity of the cell envelope-located proteinase of Lactococcus lactis subsp. lactis NCDO 763. Int. J. Biochem. 24: 707–718Google Scholar
  114. Monnet V, Nardi M, Chopin A, Chopin M-C & Gripon J-C (1994) Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J. Biol. Chem. 269: 32070–32076Google Scholar
  115. Muset G, Monnet V & Gripon J-C (1989) Intracellular proteinase of Lactococcus lactis subsp. lactis NCDO 763. J. Dairy Res. 56: 765–778Google Scholar
  116. Nakajima H (1996) Amino acid and peptide transport systems. Unpublished resultsGoogle Scholar
  117. Nardi M, Chopin M-C, Chopin A, Cals M-M & Gripon J-C (1991) Cloning and DNA sequence analysis of an X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. lactis NDCO763. Appl. Environ. Microbiol. 57: 45–50Google Scholar
  118. Nardi M, Renault P, Gripon J-C & Monnet V (1995) Duplication d'un gene pepF codant une oligopeptidase chez Lactococcus lactis. 7ème Colloque du Club des Bactéries Lactiques. p 7Google Scholar
  119. Næs H & Nissen-Meyer J (1992) Purification and N-terminal amino acid determination of the cell wall bound proteinase from Lactobacillus paracasei subsp. paracasei. J. Gen. Microbiol. 138: 313–318Google Scholar
  120. Navarre WW & Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Grampositive bacteria. Mol. Microbiol. 14: 115–121Google Scholar
  121. Neviani E, Boquien CY, Monnet V, PhanThanh L & Gripon J-C (1989) Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris AM2. Appl. Environ. Microbiol. 55: 2308–2314Google Scholar
  122. Niven GW (1991) Purification and characterization of aminopeptidase A from Lactococcus lactis subsp. lactis NCDO712. J. Gen. Microbiol. 137: 1207–1212Google Scholar
  123. Niven GW, Holder SA & Strøman P (1995) A study of the substrate specificity of aminopeptidase N from Lactococcus lactis subsp. cremoris. Appl. Microbiol. Biotechnol. 43Google Scholar
  124. Olson NF (1990) The impact of lactic acid bacteria on cheese flavor. FEMS Microbiol. Rev. 87: 131–148Google Scholar
  125. Payne JW & Smith MW (1994) Peptide transport by microorganisms. In: Rose AH & Tempest DW (Eds) Advances in Microbial Physiology. Vol. 36, pp 2–80. Academic Press, LondonGoogle Scholar
  126. Poolman B (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125–148Google Scholar
  127. Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP & Konings WN (1991) Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J. Bacteriol. 173: 6030–6037Google Scholar
  128. Poolman B, Kunji ERS, Hagting A, Juillard V & Konings WN (1995) The proteolytic pathway of Lactococcus lactis. J. Appl. Bacteriol. Symp. Suppl. 79: 65–75Google Scholar
  129. Pritchard GG & Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179–206Google Scholar
  130. Pritchard GG, Freebairn AD & Coolbear T (1994) Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris SK11. Microbiology 140: 923–930Google Scholar
  131. Reid JR, Coolbear T, Pillidge CJ & Pritchard GG (1994) Specificity of hydrolysis of bovine κ-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Appl. Environ. Microbiol. 60: 801–806Google Scholar
  132. Reid JR, Moore CH, Midwinter GG & Pritchard GG (1991a) Action of a cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine αS1-casein. Appl. Microbiol. Biotechnol. 35: 222–227Google Scholar
  133. Reid JR, Ng KH, Moore CH, Coolbear T & Pritchard GG (1991b) Comparison of bovine β-casein hydrolysis by PI and PIII-type proteinases from Lactococcus lactis subsp. cremoris. Appl. Microbiol. Biotechnol. 35: 477–483Google Scholar
  134. Sahlstrøm S, Chrzanowska J & Sørhaug T (1993) Purification and characterization of a cell wall peptidase from Lactococcus lactis subsp. cremoris IMN-C12. Appl. Environ. Microbiol. 59: 3076–3082Google Scholar
  135. Sankaran K & Wu HC (1994) Lipid modification of bacterial prolipoprotein; transfer of diacylglyceryl moiety from phosphatidylglycerol. J. Biol. Chem. 269: 19701–19706Google Scholar
  136. Sasaki M, Bosman BW & Tan PST (1995) Comparison of proteolytic activities in various lactobacilli. J. Diary Res. 62: 601–610Google Scholar
  137. Sasaki M, (1996a) Characterization of a new, broad substrate specificity aminopeptidase from the dairy organism Lactobacillus helveticus SBT 2171. Microbiol. in pressGoogle Scholar
  138. Sasaki M, Bosman BW, Iwasaki T & Tan PST (1996b) The purification and characterization of a 95 kDa X-prolyl-dipeptidyl aminopeptidase from Lactobacillus helveticus SBT 2171. (Submitted)Google Scholar
  139. Sasaki M (1996c) The purification and characterization of a new oligopeptidase from Lactobacillus helveticus SBT2171. (Submitted)Google Scholar
  140. Schmidt DG (1982) Association of caseins and casein micelle structure. In: Fox PF (Ed) Developments in Dairy Chemistry, vol. 1, pp 61–68, Elsevier, London, U.K.Google Scholar
  141. Shao W, Parkin KL & Steele JL (1996) Characterization of two dipeptidases from Lactobacillus helveticus. (Submitted)Google Scholar
  142. Smid EJ, Driessen AJM & Konings WN (1989) Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. J. Bacteriol. 171: 292–298Google Scholar
  143. Smid EJ, Poolman B & Konings WN (1991) Casein utilization by lactococci. Appl. Environ. Microbiol. 57: 2447–2452Google Scholar
  144. Steiner H-Y, Naider F & Becker JM (1995) The PRT family: a new group of peptide transporters. Mol. Microbiol. 16: 825–834Google Scholar
  145. Strøman P (1992) Sequence of a gene (lap) encoding a 95.3-kDa aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Gene 113: 107–112Google Scholar
  146. Stucky K, Hagting A, Klein JR, Matern H, Henrich B, Konings WN & Plapp R (1995a) Cloning and characterization of brnQ; a gene encoding a low affinity branched chain amino acid carrier of Lactobacillus delbrückii subsp. lactis. Mol. Gen. Genet. 249: 682–690Google Scholar
  147. Stucky K, Klein JR, Schüller A, Matern H, Henrich B & Plapp R (1995b) Cloning and DNA sequence analysis of pepQ, a prolidase gene from Lactobacillus delbrückii subsp. lactis DSM7290 and partial characterization of its product. Mol. Gen. Genet. 247: 494–500Google Scholar
  148. Stucky K, Schick J, Klein JR, Henrich B & Plapp R (1996) Characterization of pepRl, a gene coding for a potential transcriptional regulator of Lactobacillus delbrückii subsp. lactis DSM7290. FEMS Microbiol. Lett. (in press)Google Scholar
  149. Swaisgood HE (1993) Symposium: genetic perspectives on milk proteins: comparative studies and nomenclature. J. Dairy Sci. 76: 3054–3061Google Scholar
  150. Tame JRH, Murshudov GN, Dodson EJ, Neil TK, Dodson GG, Higgins CF & Wilkinson AJ (1994) The structural basis of sequence-independent peptide binding by OppA protein. Science 264: 1578–1581Google Scholar
  151. Tan PST, Chapot-Chartier M-P, Pos KM, Rousseaud M, Boquien C-Y, Gripon J-C & Konings WN (1992b) Localization of peptidases in Lactococci. Appl. Environ. Microbiol. 58: 285–290Google Scholar
  152. Tan PST & Konings WN (1990) Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 56: 526–532Google Scholar
  153. Tan PST, Poolman B & Konings WN (1993a) Proteolytic enzymes of Lactococcus lactis. J. Dairy Res. 60: 269–286Google Scholar
  154. Tan PST, Pos KM & Konings WN (1991) Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 57: 3593–3599Google Scholar
  155. Tan PST, Sasaki M, Bosman BW & Iwasaki T (1995) Purification and characterization of a dipeptidase from Lactobacillus helveticus SBT 2171. Appl. Environ. Microbiol. 61: 3430–3435Google Scholar
  156. Tan PST, Van Alen-Boerrigter IJ, Poolman B, Siezen RJ, De Vos WM & Konings WN (1992a) Characterization of the Lactococcus lactis pepN gene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEBS Lett. 306: 9–16Google Scholar
  157. Tan PST, Van Kessel TAJM, Van de Veerdonk FLM, Zuurendonk PF, Bruins AP & Konings WN (1993b) Degradation and debittering of a tryptic digest from β-casein by aminopeptidase N from Lactococus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 59: 1430–1436Google Scholar
  158. Tynkkynen S, Buist G, Kunji E, Kok J, Poolman B, Venema G & Haandrikman AJ (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523–7532Google Scholar
  159. Van Alen-Boerrigter IJ, Baankreis R & De Vos WM (1991) Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N. Appl. Environ. Microbiol. 57: 2555–2561Google Scholar
  160. Van Boven A, Tan PST & Konings WN (1988) Purification and characterization of a dipeptidase from Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 43–49Google Scholar
  161. Varmanen P, Ranthanen T & Palva A (1996a) Characterization of a novel ABC transporter-proline iminopeptidase operon from Lactobacillus helveticus. (Submitted)Google Scholar
  162. Varmanen P, Steele JL & Palva A (1996b) Characterization of a prolinase gene and its product, and an adjacent ABC transporter gene from Lactobacillus helveticus. Microbiology (in press)Google Scholar
  163. Varmanen P, Vesanto E, Steele JL & Palva A (1994) Characterization and expression of the pepN gene encoding a general aminopeptidase from Lactobacillus helveticus. FEMS Microbiol. Lett. 124: 315–320Google Scholar
  164. Vesanto E, Peltoniemi K, Purtsi T, Steele JL & Palva A (1996) Molecular characterization, overexpression and purification of a novel dipeptidase from Lactobacillus helveticus. Appl. Microbiol. Biotechnol. submittedGoogle Scholar
  165. Vesanto E, Savijoki K, Rantanen T, Steele JL & Pavla A (1995a) An X-prolyl dipeptidyl iminopeptidase (pepX) gene from Lactobacillus helveticus. Microbiology 141: 3067–3075Google Scholar
  166. Vesanto E (1995b) Molecular characterization, heterologous expression and purification of an X-prolyl-dipeptidyl aminopeptidase gene from Lactobacillus helveticus. (Submitted)Google Scholar
  167. Vesanto E, Varmanen P, Steele JL & Palva A (1994) Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase. Eur. J. Biochem. 224: 991–997Google Scholar
  168. Visser S, Exterkate FA, Slangen CJ & De Veer GJCM (1986) Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine αS1-, β- and κ-casein. Appl. Environ. Microbiol. 52: 1162–1166Google Scholar
  169. Visser S, Robben AJPM & Slangen CJ (1991). Specificity of a cellenvelope located proteinase (PIII-type) from Lactococcus lactis subsp. cremoris AM1 in its action on bovine β-casein. Appl. Microbiol. Biotechnology 35: 477–483Google Scholar
  170. Visser S, Slangen CJ, Exterkate FA & De Veer GJCM (1988) Action of a cell wall proteinase (PI) from Streptococcus cremoris HP on bovine β-casein. Appl. Microbiol. Biotechnol. 29: 61–66Google Scholar
  171. Visser S, Slangen CJ, Robben AJPM, Van Dongen WD, Heerma W & Haverkamp J (1994) Action of a cell-envelope proteinase (CEPIII-type) from Lactococcus lactis subsp. cremoris AM1 on bovine κ-casein. Appl. Microbiol. Biotechnol. 41: 644–651Google Scholar
  172. Vongerichten KF, Klein JR, Matern H & Plapp R (1994) Cloning and nucleotide sequence analysis of pepV, a carnosinase gene from Lactobacillus delbrückii subsp. lactis DSM7290, and partial characterisation of the enzyme. Microbiol. 140: 2591–2600Google Scholar
  173. Vongerichten KF & Krũger E. Unpublished resultsGoogle Scholar
  174. Von Heijne G (1989) The structure of signal peptides from bacterial lipoproteins. Protein Engineer. 2: 531–534Google Scholar
  175. Vos P, Boerrigter IJ, Buist G, Haandrikman AJ, Nijhuis M, De Reuver MB, Siezen RJ, Venema G, De Vos W & Kok J (1991) Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes. Protein Engineer. 4: 479–484Google Scholar
  176. Vos P, Simons G, Siezen RJ & De Vos WM (1989a) Primary structure and organization of the gene for a prokaryotic cell envelopelocated serine proteinase. J. Biol. Chem. 264: 14579–13585Google Scholar
  177. Vos P, Van Asseldonk M, Van Jeveren F, Siezen R, Simons G & De Vos WM (1989b) A maturation protein is essential for the production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell. J. Bacteriol. 171: 2795–2802Google Scholar
  178. Wohlrab Y & Bockelman W (1992) Purification and characterization of a dipeptidase from Lactobacillus delbrückii subsp. bulgaricus. Int. Dairy J. 2: 345–361Google Scholar
  179. (1993) Purification and characterization of a second aminopeptidase (PepC-like) from Lactobacillus delbrückii subsp. bulgaricus B14. Int. Dairy J. 3: 685–701Google Scholar
  180. (1994) Purification and characterization of a new aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus B14. Int. Dairy J. 4: 409–427Google Scholar
  181. Yamamoto N, Akino A & Takano T (1993) Purification and specificity of a cell-wall-associated proteinase from Lactobacillus helveticus CP790. J. Biochem. 114: 740–745Google Scholar
  182. Yan T-R, Ho S-C & Hou C-L (1992) Catalytic properties of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. cremoris nTR. Biosci. Biotech. Biochem. 56: 704–707Google Scholar
  183. Yüksel, GÜ & Steele JL (1995) DNA sequence analysis, expression, distribution, and physiological role of the X-prolyl dipeptidyl aminopeptidase (PepX) gene from Lactobacillus helveticus CNRZ 32. (Submitted)Google Scholar
  184. Zevaco C, Monnet V & Gripon J-C (1990) Intracellular X-prolyl dipeptidyl peptidase from Lactococcus lactis subsp. lactis: purification and properties. J. Appl. Bacteriol. 68: 357–366Google Scholar
  185. Zevaco C & Gripon J-C (1988) Properties and specificity of a cellwall proteinase from Lactobacillus helveticus. Le Lait 68: 393–408Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Edmund R. S. Kunji
    • 1
  • Igor Mierau
    • 2
  • Anja Hagting
    • 1
  • Bert Poolman
    • 1
  • Wil N. Konings
    • 1
  1. 1.Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenHarenThe Netherlands
  2. 2.Department of Genetics, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenHarenThe Netherlands

Personalised recommendations