Advertisement

Planta

, Volume 163, Issue 1, pp 91–96 | Cite as

Composition and function of plastoglobuli

II. Lipid composition of leaves and plastoglobuli during beech leaf senescence
  • M. Tevini
  • D. Steinmüller
Article

Abstract

The lipid composition of whole leaves and isolated plastoglobul of beech (Fagus sylvatica) has been studied during four natural autumnal senescence stages. Chlorophylls, glycolipids, and phospholipids were extensively degraded in leaves. About 20% of the glycolipids found in leaves during summer, however, remained in the last stage of leaf senescence. Triacylglycerols, also detected in large amounts in summer leaves, were hydrolyzed during senescence. The content of free fatty acids derived from degradation of glycerolipids therefore increased. The total carotenoid and prenyl quinone content was largely unchanged during senescence, except during the last stage investigated, but the reduced forms of prenyl quinones decreased while the oxidized prenyl quinones increased. Plastoglobuli isolated from summer leaves mainly contained triacylglycerols, plastohydroquinone, and α-tocopherol. The triacylglycerol content declined in plastoglobuli during senescence. Most of the triacylglycerols must be located outside the plastoglobuli throughout the stages investigated. Carotenoids liberated from thylakoids were esterified and increasingly deposited in plastoglobuli during senescence. In the last senescence stage, carotenoid esters were the main component of plastoglobuli. Prenyl quinones were also transferred into plastoglobuli. Reduced prenyl quinones were sucessively oxidized during senescence and plastoquinone (oxidized) was the predominant prenyl quinone in plastoglobuli isolated from the last senescence stage. The carotenoid and prenyl quinone distribution was identical in leaves and plastoglobuli during late senescence. The main constituents of thylakoids, glycolipids and proteins, were not deposited in plastoglobuli and therefore did not play an important role in plastoglobuli metabolism.

Key words

Chloroplast senescence Fagus Leaf lipid Plastoglobuli composition 

Abbreviation

PQ

plastoquinone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahl, J., Franke, B., Monéger, R. (1976) Lipid composition of envelopes, prolamellar bodies, and other plastid membranes in etiolated, green, and greening wheat leaves. Planta 129, 193–201Google Scholar
  2. Bailey, J.R., Whyborn, A.G. (1963) The osmiophilic globules of chloroplasts. II. Globules of the spinach beet chloroplast. Biochim. Biophys. Acta 78, 296–306Google Scholar
  3. Bancher, E., Washüttel, J., Goller, H.-J. (1972) Untersuchungen der Lipide in den Sphäerosomen- und Mitochondrienfraktionen-bestrahlter Samen von Erdnuß (Arachis hypogaea) und Walnuß (Juglans regia). Z. Pflanzenphysiol. 67, 399–405Google Scholar
  4. Debuch, H., Mertens, W., Winterfeld, M. (1968) Quantitative Bestimmung der Phospholipide mit Hilfe einer zweidimensionalen dünnschicht-chromatographischen Methode. Hoppe-Seyler's Z. Physiol. Chem. 349, 896–902Google Scholar
  5. Devidé, Z., Ljubešić, N. (1974) The reversion of chromoplasts to chloroplasts in pumpkin fruits. Z. Pflanzenphysiol. 73, 296–306Google Scholar
  6. Falk, H. (1960) Magnoglobuli in Chromoplasten von Ficus elastica Roxb. Planta 55, 525–532Google Scholar
  7. Ferguson, C.H.R., Simon, E.W. (1973) Membrane lipids in senescing green tissue. J. Exp. Bot. 24, 307–316Google Scholar
  8. Frey, R. (1977) Untersuchungen über die Aktivität von katabolischen Enzymen des Phospho- und Galaktolipidstoffwechsels bei der Entwicklung und Degeneration von Chloroplasten. Dissertation University of KarlsruheGoogle Scholar
  9. Greenwood, A.D., Leech, R.M., Williams, J.P. (1963) The osmiophilic globules of chloroplasts. I. Osmiophilic globules as a normal component of chloroplasts and their isolation and composition in Vicia faba. Biochim. Biophys. Acta 78, 148–162Google Scholar
  10. Grönegress, P. (1974) The structure of chromoplasts and their conversion to chloroplasts. J. Microsc. (Paris) 19, 183–192Google Scholar
  11. Hansmann, P., Sitte, P. (1982) Composition and molecular structure of chromoplast globules. Plant Cell Rep. 1, 111–114Google Scholar
  12. Harnischfeger, G. (1973) Chloroplast degradation in ageing cotyledons of pumpkin. J. Exp. Bot. 24, 1236–1246Google Scholar
  13. Harris, J.B., Arnott, H.J. (1973) Effects of senescence on chloroplasts of the tobacco leaf. Tissue Cell 5, 527–544Google Scholar
  14. Huber, D.J., Newman, D.W. (1976) Relationship between lipid changes and plastid ultrastructural changes in senescing and regreening soybean cotyledons. J. Exp. Bot. 27, 490–511Google Scholar
  15. Ikeda, T. (1979) Electron microscopic evidence for the reversible transformation of Euonymus plastids Bot. Mag. Tokyo 92, 23–30Google Scholar
  16. Khera, P.K., Tilney-Bassett, R.A.E. (1976) Fine structural observations of the cotyledons in germinating seeds of Pelargonium X Hortorum Bailey: with normal and mutant plants. Protoplasma 88, 201–214Google Scholar
  17. Kutzelnigg, H., Meyer, B., Schötz, F. (1975) Untersuchungen an Plastommutaten von Oenothera II. Überblick über die Ultrastruktur der mutierten Plastiden. III. Vergleichende ultrastrukturelle Charakterisierung der Mutanten. Biol. Zentralbl. 94, 513–555Google Scholar
  18. Lichtenthaler, H.K. (1964) Untersuchungen über die osmiophilen Globuli der Chloroplasten. Ber. Dtsch. Bot. Ges. 79, 111–117Google Scholar
  19. Lichtenthaler, H.K. (1966) Plastoglobuli und Plastidenstruktur. Ber. Dtsch. Bot. Ges. 79, 82–88Google Scholar
  20. Lichtenthaler, H.K. (1969a) Die Plastoglobuli von Spinat, ihre Größe, Isolierung und Lipochinozusammensetzung. Protoplasma 68, 65–77Google Scholar
  21. Lichtenthaler, H.K. (1969b) Die Plastoglobuli von Spinat, ihre Größe, und Zusammensetzung während der Chloroplasten-degeneration. Protoplasma 68, 315–326Google Scholar
  22. Lichtenthaler, H.K. (1970) Formation and function of plastoglobuli in plastids. In: Congrès international de Microscopie électronique, Grenoble 205-206. Soc. Françoise Micr. Eléctronique, ParisGoogle Scholar
  23. Lichtenthaler, H.K. (1971) Die unterschiedliche Synthese der lipophilen Plastidenchinone in Sonnen- und Schattenblättern von Fagus silvatica L. Z. Naturforsch. Teil B 26, 832–842Google Scholar
  24. Mackender, R.O. (1978) Etioplast development in dark-grown leaves of Zea mays L. Plant Physiol. 62, 499–506Google Scholar
  25. Mittelheuser, C.J., Van Steveninck R.F.M. (1971) The ultrastructure of wheat leaves. I. Changes due to natural senescence and effects of kinetin and ABA on detached leaves incubated in the dark. Protoplasma 73, 239–252Google Scholar
  26. Roughan, P.G., Batt, R.D. (1968) Quantitative analysis of sulfolipid and galactolipids in plant tissues. Anal. Biochem. 22, 78–88Google Scholar
  27. Schulz, D. (1977) Chromoplasten bei Moosen. Z. Pflanzenphysiol. 81, 85–88Google Scholar
  28. simola, L.K. (1973) Development of chloroplasts in intact Atropa belladonna and in stem callus cultures during greening and leaf differentiation. Ann. Acad. Sci. Fenn. Ser. A4 196, 1–10Google Scholar
  29. Simpson, D.J., Baqar, M.R., Lee, T.H. (1977) Fine structure and carotinoid composition of the fibrillar chromoplast of Asparagus officinalis L. Ann. Bot. (London) 41, 1101–1108Google Scholar
  30. Simpson, D.J., Baqar, M.R., Lee, T.H. (1978a) Fine structure of the chromoplast of fruit of Solanum aviculare Forth. var. Brisbanese. Aust. J. Bot. 26, 783–792Google Scholar
  31. Simpson, D.J., Baqar, M.R., Lee, T.H. (1978b) Chromoplast ultrastructure in fruits of Solanum pseudocapsicum and fruit and sepals of Physalis alkekengi. Aust. J. Bot. 26, 793–806Google Scholar
  32. Simpson, D.J., Lee, T.H. (1976) Plastoglobules of leaf chloroplasts of two cultivars of Capsicum annuum. Cytobios 15, 139–147Google Scholar
  33. Sitte, P. (1974) Plastidenmetamorphose und Chromoplasten bei Chrysosplenium. Z. Pflanzenphysiol. 73, 243–265Google Scholar
  34. Sitte, P. (1977a) Chromoplasten-bunte Objekte der modernen Zellbiologie. Biol. unserer Zeit 7, 65–74Google Scholar
  35. Sitte, P. (1977b) Functional organization of biomembranes. In: Lipids and lipid polymers in higher plants, pp. 1–28, Tevini, M., Lichtenthler, H.K., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. Sprey, B. (1973) Lichtinduzierte Entwicklung von Etioplasten zu Chloroplasten: Induktion und Regulation der Membranbildung. Ber. Kernforsch. Jülich, Nr. 1019 BOGoogle Scholar
  37. Steinmüller, D., Tevini, M. (1981) Die Lipidzusammensetzung von Plastoglobuli. In: 3. Arbeitstagung Pflanzliche Lipide, p. 4, University of UlmGoogle Scholar
  38. Steinmüller, D., Tevini, M. (1985) Composition and function of plastoglobuli. I. Isolation and purification from chloroplasts and chromoplasts. Planta 163 (in press)Google Scholar
  39. Tevini, M. (1971) Der Einfluß von Phosphat- und Nitratmangel auf die Synthese der Phospho- und Glykolipide bei Impatiens balsamina. Ber. Dtsch. Bot. Ges. 84, 595–606Google Scholar
  40. Tevini, M. (1976) Veränderungen der Glyko- und Phospholipide während der Blattvergilbung. Planta 128, 167–171Google Scholar
  41. Tevini, M. (1977) Light, function, and lipids during plastid development. In: Lipids and lipid polymers in higher plants, pp. 121–145, Tevini, M., Lichtenthaler, H.K. eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  42. Tevini, M., Steinmüller, D. (1984) Lipids. In: High performance liquid chromatography in biochemistry, Henschen, A., Hupe, K.P., Lottspreich, F., Voelter, W., eds. Verlag Chemie Weinheim (in press)Google Scholar
  43. Walles, B., Hudack, J. (1975) Etioplast and chromoplast development in the lycopenic mutant of maize. J. Submicrosc. Cytol. 7, 325–334Google Scholar
  44. Wrischer, M.L., Ljubešić, N., Devidé, Z. (1975) Transformation of plastids in the leaf of Acer negundo L. var. odessanum (Rothe). J. Cell Sci. 18, 509–518Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. Tevini
    • 1
  • D. Steinmüller
    • 1
  1. 1.Botanisches Institut II der UniversitätKarlsruheFederal Republic of Germany

Personalised recommendations