Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The mouse Igh-1 a and Igh-1 b H chain constant regions are derived from two distinct isotypic genes

Abstract

Genetic and structural analyses of the mouse genes encoding constant region of immunoglobulin subclasses (Igh-C) have shown that recombination is rare within this cluster which is inherited as a set designated the Igh haplotype. Recent molecular analyses have demonstrated that either DNA exchanges or gene duplications have probably occurred during the evolution of this set of genes. In order to assess the generality of the duplication processes, the presence and expression of two allelic forms of the Igh-1 (γ2a) gene (Igh-1 a and Igh-1 b) were examined in a large panel of wild mice belonging to Mus musculus domesticus and Mus musculus musculus species. Our data indicate that certain M. m. domesticus animals and most animals in the M. m. musculus group coexpress the two allelic forms of Igh-1. Moreover, genetic studies show that these two immunoglobulin types are encoded by tandemly arranged genes. We propose that wild mice, from which laboratory mice are derived, carry three isotypic γ2 genes (Igh-1 a, Igh-1b, Igh-3), and these have given rise to the two isotypes seen in laboratory strains by a deletion/insertion mechanism.

This is a preview of subscription content, log in to check access.

References

  1. Bonhomme, F.: Evolutionary relationships in the genus Mus. Curr Top Microbial Immunol 127: 19–34, 1986

  2. Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V. M., Moriwaki, K., Nevo, E., and Thaler, L.: Biochemical diversity and evolution in the genus Mus. Biochem Genet 22: 275–303, 1984

  3. Bonhomme, F., Guenet, J. L., Dod, B., Moriwaki, K., and Bulfied, G.: The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biol J Linn Soc 30: 51–58, 1987

  4. Boursot, P., Bonhomme, F., Britton-Davidian, J., Catalan, J., Yonekawa, H., Orsini, P., Gerasimov, S., and Thaler, L.: Introgression differentielle des genomes nucleaires et mitochondriaux chez deux semi-espèces de souris. C R Acad Sci Paris 299: 365–370, 1984

  5. Cazenave, P.-A., Bonhomme, F., Guenet, J. L., and Kindt, T. J.: Correlation of CTβ phenotype with origins of laboratory mouse strains. Curr Top Microbial Immunol 127: 300–306, 1986

  6. Feinberg, A. P. and Vogelstein, B.: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13, 1983

  7. Green, M. C.: Genetic nomenclature for the immunoglobulin loci of the mouse. Immunogenetics 8: 89–99, 1979

  8. Herzenberg, L. A. and Herzenberg, L. A.: Mouse immunoglobulin allotypes: description and special methodology. In D. M. Weir (ed.): Handbook of Experimental Immunology, Volume 1, Blackwell Scientific Publications, Oxford, pp. 12–23, 1978

  9. Huang, C. M., Parsons, M., Wakeland, E. K., Moriwaki, K. E., and Herzenberg, L. A.: New immunoglobulin IgG allotypes and haplotypes found in wild mice with monoclonal anti-allotope antibodies. J Immunol 128: 661–667, 1982

  10. Huang, C. M., Parsons, M., Oi, V. T., Huang, H.-J. S., and Herzenberg, L. A.: Genetic characterization of mouse immunoglobulin allotypic determinants (allotopes) defined by monoclonal antibodies. Immunogenetics 18: 311–321, 1983

  11. Huppi, K., Jouvin-Marche, E., Scott, C., Potter, M., and Weigert, M.: Genetic polymorphism at the κ chain loci in mice: comparisons of restriction enzyme hybridization fragments of variable and constant region genes. Immunogenetics 21: 445–457, 1985

  12. Lieberman, R.: Genetics of IgCH (allotype) locus in the mouse. Springer Semin Immunopathol 1: 7–30, 1978

  13. Lieberman, R. and Potter, M.: Crossing over between genes in the immunoglobulin heavy chain linkage group of the mouse. J Exp Med 130: 519–541, 1969

  14. Oi, V. T., Herzenberg, L. A., and Birstein, B. K.: Localisation of murine Igh-Ia allotypic determinants by using a panel of mouse myeloma variant immunoglobulins. J Immunol 130: 1967–1969, 1983

  15. Ollo, R. and Rougeon, F.: Gene conversion and polymorphism: generation of mouse immunoglobulin γ2a chain alleles by differential gene conversion by 2b chain gene. Cell 32: 515–523, 1983

  16. Ollo, R., Auffray, C., Morchamps, C., and Rougeon, F.: Comparison of mouse immunoglobulin gamma-2a and gamma-2b chain genes suggest that exons can be exchanged between genes in a multigenic family. Proc Natl Acad Sci USA 78: 2442–2446, 1981

  17. Parsons, M., Cazenave, P.-A., and Herzenberg, L. A.: Igh-4d, a new allotype at the mouse IgG1 heavy chain locus. Immunogenetics 14: 341–344, 1981

  18. Schreier, P., Bothwell, A. L. M., Mueller-Hill, B., and Baltimore, D.: Multiple differences between the nucleic acid sequences of the IgG2a alleles of the mouse. Proc Natl Acad Sci USA 78: 4495–4499, 1981

  19. Shimizu, A., Takahahi, N., Yamawaki-Kataoka, Y., Nishida, Y., Katakoaka, T., and Honjo, T.: Ordering of mouse immunoglobulin heavy chain genes by molecular cloning. Nature 289: 149–153, 1981

  20. Shimizu, A., Takahashi, N., Yaoita, Y., and Honjo, T.: Organization of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell 28: 499–506, 1982a

  21. Shimizu, A., Hamaguchi, Y., Yaoita, Y., Moriwaki, K., Kondo, K., and Honjo, T.: Japanese wild mouse. Mus Musculus molossinus, has duplicated immunoglobulin γ2a genes. Nature 298: 82–84, 1982b

  22. Sonoda, S. and Schlanowitz, M.: Studies of 125I trace labeling of immunoglobulin G by chloramine-T. Immunochemistry 7: 885, 1970

  23. Southern, E. M.: Detection of specific sequence among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517, 1975

Download references

Author information

Correspondence to Pierre-André Cazenave.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jouvin-Marche, E., Morgado, M.G., Leguern, C. et al. The mouse Igh-1 a and Igh-1 b H chain constant regions are derived from two distinct isotypic genes. Immunogenetics 29, 92–97 (1989). https://doi.org/10.1007/BF00395856

Download citation

Keywords

  • Structural Analysis
  • Genetic Study
  • Molecular Analysis
  • Gene Duplication
  • Laboratory Strain