Marine Biology

, Volume 77, Issue 3, pp 247–256 | Cite as

Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight

II. Analysis of benthic bacterial populations
  • L.-A. Meyer-Reil


Seasonal variations in bacterial populations (total number, biomass, biomass-spectrum, number of dividing cells) as well as in concentrations and decomposition rates of particulate organic material were followed in a sandy mud sediment of the Western Kiel Bight (Baltic Sea; FRG). The strong seasonal variations observed could be traced back to the effect of certain ecological situations and events in the sediment from which the input of the phytoplankton blooms in autumn and spring, respectively, the accumulation of organic material during winter, and the spring development of the benthic fauna turned out to be the most important. Bacterial carbon net production following the breakdown of the phytoplankton blooms ranged between 9 μg (autumn) and 16 μg (spring) per g of dry weight sediment per day. The consequences of shifts in the size composition of the bacterial populations as well as the importance of the measurement of enzymatic decomposition rates of particulate organic material in sediments are demonstrated and discussed in relation to the events mentioned above.


Decomposition Rate Bacterial Population Phytoplankton Bloom Benthic Fauna Ecological Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bengtsson, W.: Aktivität des Elektronen-Transport-Systems (ETS) und Wärmeproduktion mariner Sedimente. Ph. D. thesis, Kiel University, 127 pp. 1982Google Scholar
  2. Bodungen, B. von: Der Jahresgang der Nährsalze und der Primärproduktion des Planktons in der Kieler Bucht unter Berücksichtigung der Hydrographie. Ph. D. thesis, Kiel University, 116 pp. 1975Google Scholar
  3. Burns, R. G.: Microbial adhesion to soil surfaces: consequences for growth and enzyme activities. In: Microbial adhesion to surfaces, pp 249–262. Ed. by R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter and B. Vincent. London: Ellis Horwood Limited 1980Google Scholar
  4. Cammen, L. M.: Effect of particle size on organic content and microbial abundance within four marine sediments. Mar. Ecol. Prog. Ser. 9, 273–280 (1982)Google Scholar
  5. Corpe, W. A. and H. Winters: Hydrolytic enzymes of some periphytic bacteria. Can. J. Microbiol. 18, 1483–1490 (1972)Google Scholar
  6. Dale, N. G.: Bacteria in intertidal sediments: factors related to their distribution. Limnol. Oceanogr. 19, 509–518 (1974)Google Scholar
  7. Fallon, R. D., S. Y. Newell and C. S. Hopkinson: Bacterial production in marine sediments: will cell-specific measures agree with whole-system metabolism? Mar. Ecol. Prog. Ser. 11, 119–127 (1983)Google Scholar
  8. Gerlach, S. A.: Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia (Berl.) 33, 55–69 (1978)Google Scholar
  9. Graf, G., W. Bengtsson, A. Faubel, L.-A. Meyer-Reil, R. Schulz, H. Theede and H. Thiel: The importance of the spring phytoplankton bloom for the benthic system of the Kiel Bight. Rapp. et Proc. Verb. (In press) (1983a)Google Scholar
  10. Graf, G., R. Schulz, R. Peinert and L.-A. Meyer-Reil: Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight I. Analysis of processes on a community level. Mar. Biol. 77, 235–246 (1983b)Google Scholar
  11. Griffiths, R. P., S. S. Hayasaka, T. M. McNamara and R. Y. Morita: Relative microbial activity and bacterial concentrations in water and sediment samples taken in the Beaufort Sea. Can. J. Microbiol. 24, 1217–1226 (1978)Google Scholar
  12. Handa, H.: The distribution of the dissolved and the particulate carbohydrates in the Kuroshio and its adjacent areas. J. Oceanogr. Soc. Japan 23, 115–123 (1967)Google Scholar
  13. Hendrikson, P.: Auf- und Abbauprozesse partikulärer organischer Substanz anhand von Seston- und Sinkstoffanalysen (7. 3. 1973–5. 4. 1974, in der westlichen Ostsee bei Boknis Eck). Ph. D. thesis, Kiel University, 160 pp. 1975Google Scholar
  14. Kepkay, P. E., R. C. Cooke and J. A. Novitsky: Microbial autotrophy: a primary source of organic carbon in marine sediments. Science, N.Y. 204, 68–69 (1979)Google Scholar
  15. Kim, J. and C. E. ZoBell: Occurrence and activities of cell-free enzymes in oceanic environments. In: Effect of the ocean environment on microbial activities, pp 368–385. Ed. by R. R. Colwell and R. Y. Morita. Baltimore, London, Tokyo: University Park Press 1974Google Scholar
  16. Little, J. E., R. E. Sjogren and G. R. Carson: Measurement of proteolysis in natural waters. Appl. environ. Microbiol. 37, 900–908 (1979)Google Scholar
  17. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  18. Meadows, P. S. and J. G. Anderson: Micro-organisms attached to marine and freshwater sand grains. Nature, Lond. 212, 1059–1060 (1966)Google Scholar
  19. Meyer-Reil, L.-A.: Bacterial growth rates and biomass production. In: Microbial ecology of a brackish water environment, pp 223–236. Ed. by G. Rheinheimer. Berlin, Heidelberg, New York: Springer Verlag 1977Google Scholar
  20. Meyer-Reil, L. A.: Enzymatic decomposition of proteins and carbohydrates in marine sediments: methodology and field observations during spring. Kieler Meeresforsch., Sonderh. 5, 311–317 (1981)Google Scholar
  21. Meyer-Reil, L.-A., M. Bölter, R. Dawson, G. Liebezeit, H. Szwerinski and K. Wolter: Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect. Appl. environ. Microbiol. 39, 797–802 (1980)Google Scholar
  22. Meyer-Reil, L.-A., R. Dawson, G. Liebezeit and H. Tiedge: Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar. Biol. 48, 161–171 (1978)Google Scholar
  23. Montagna, P. A.: Sampling design and enumeration statistics for bacteria extracted from marine sediments. Appl. environ. Microbiol. 43, 1366–1372 (1982)Google Scholar
  24. Moriarty, D. J. W.: Measurement of bacterial biomass in sandy sediments. In: Biogeochemistry of ancient and modern environments, pp 131–139. Ed. by P. A. Trudinger, M. R. Walter, B. J. Ralph. Berlin: Springer-Verlag 1980Google Scholar
  25. Moriarty, D. J. W. and P. C. Pollard: Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar. Biol. 72, 165–173 (1982)Google Scholar
  26. Morrison, S. J. and D. C. White: Effects of grazing by estuarine gammaridean amphipods on the microbiota of allochthonous detritus. Appl. environ. Microbiol. 40, 659–671 (1980)Google Scholar
  27. Schwinghamer, P.: Characteristic size distributions of integral benthic communities. Can. J. Fish. aquat. Sci. 38, 1255–1263 (1981)Google Scholar
  28. Smetacek, V.: Annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight. Ophelia 1, Suppl., 65–76 (1980)Google Scholar
  29. Webster, T. J. M., M. A. Paranjape and K. H. Mann: Sedimentation of organic matter in St. Margaret's Bay, Nova Scotia. J. Fish. Res. Bd Can. 32, 1399–1407 (1975)Google Scholar
  30. Weise, W. and G. Rheinheimer: Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microb. Ecol. 4, 175–188 (1978)Google Scholar
  31. Weise, W. and G. Rheinheimer: Fluoreszenzmikroskopische Untersuchungen über die Bakterienbesiedelung mariner Sand-sedimente. Bot. Mar. 22, 99–106 (1979)Google Scholar
  32. Zimmermann, R.: Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy. In: Microbial ecology of a brackish water environment, pp 103–120. Ed. by G. Rheinheimer. Berlin, Heidelberg, New York: Springer-Verlag 1977Google Scholar
  33. Zimmermann, R., R. Iturriaga and J. Becker-Birk: Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. environ. Microbiol. 36, 926–935 (1978)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • L.-A. Meyer-Reil
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKiel 1Germany (FRG)

Personalised recommendations