Advertisement

Marine Biology

, Volume 77, Issue 3, pp 235–246 | Cite as

Benthic response to sedimentation events during autumn to spring at a shallow-water station in the Western Kiel Bight

I. Analysis of processes on a community level
  • G. Graf
  • R. Schulz
  • R. Peinert
  • L.-A. Meyer-Reil
Article

Abstract

The response of the benthos to the break up of anoxia in the Kiel Bight (Western Baltic Sea), and to three succeeding events of “external” food supply, consisting of a settled autumn plankton bloom, resuspended matter and macrophyte input during winter, and of a sedimented spring phytoplankton bloom, is described on a community level. The first input of oxygen broke up anoxic conditions and made stored food resources available to decomposition. This “internal” food supply, mainly consisting of protein (folin positive matter), was followed by a drastic increase in heat production and ATP-biomass and caused a period of low redox potential, which lasted for several weeks. During this phase, a plankton bloom (dinoflagellates and diatoms) settled to the sea floor. Although there was an immediate response of benthic activity, this food input was not completely consumed by the strongly disturbed benthic community. During winter resuspended matter and the input of macrophyte debris caused another maximum in benthic activity and biomass despite the low temperature. The response to sedimentation of cells from a diatom bloom during mid March was also without any time lag and was consumed within 5–6 wk. A comparison of the amount of particles collected in a sediment trap with the increase of organic matter in the sediment demonstrated that the sediment collected four times (autumn) and seven to eight times (spring) more than measured by the sediment trap. Strong indications of food limitation of benthic activity were found. During autumn and winter these indications were caused more by physical than by biological processes. The three events of “external” food supply caused a temporary shift in the type of metabolism towards fermentation processes and reduced the redox potential. In spring the development of the benthic community was still being strongly influenced by the events of the preceding summer and autumn.

Keywords

Phytoplankton Macrophyte Dinoflagellate Benthic Community Sediment Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arntz, W. E.: Zielsetzung und Probleme struktureller Benthosuntersuchungen in der marinen Ökosystemforschung. Verh. Gesellsch. Ökologie, 7, 35–51, Kiel (1978)Google Scholar
  2. Arntz, W. E.: Zonation and dynamics of macrobenthos biomass in an area stressed by oxygen deficiency. In: Stress effects on natural ecosystems, pp 215–226. Ed. by G. W. Barrett and R. Rosenberg. New York: John Wiley & Sons Ltd. 1981Google Scholar
  3. Arntz, W. E. and H. Rumohr: An experimental study of macrobenthic colonization and succession, and the importance of seasonal variation in temperate latitudes. J. exp. mar. Biol. Ecol. 64, 17–45 (1982)Google Scholar
  4. Bengtsson, W.: Aktivität des Elektronen-Transport-Systems (ETS) und Wärmeproduktion mariner Sedimente. Ph. D. thesis, Kiel University, 127 pp. 1982Google Scholar
  5. Bodungen, B. von: Der Jahresgang der Nährsalze und der Primärproduktion des Planktons in der Kieler Bucht unter Berücksichtigung der Hydrographie. Ph. D. thesis, Kiel University, 116 pp. 1975Google Scholar
  6. Christensen, D. and T. H. Blackburn: Turnover of 14C-labelled acetate in marine sediments. Mar. Biol. 71, 113–119 (1982)Google Scholar
  7. Edler, L.: Recommendation on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic mar. Biologist Publ. 5, 1–38 (1979)Google Scholar
  8. Ehrhard, M. and A. Wenck: Wind pattern and hydrogen sulfide in shallow water of the Western Baltic Sea, a cause and effect relationship. Meeresforsch. (In press)Google Scholar
  9. Fenchel, T. and T. H. Blackburn: Bacteria and mineral cycling, 225 pp. New York: Academic Press 1979Google Scholar
  10. Graf, G., W. Bengtsson, U. Diesner, R. Schulz and H. Theede: Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Mar. Biol. 67, 201–208 (1982)Google Scholar
  11. Graf, G., W. Bengtsson, A. Faubel, L.-A. Meyer-Reil, R. Schulz, H. Theede and H. Thiel: The importance of the spring phytoplankton bloom for the benthic system of the Kiel Bight. Rapp. Proc. Verb. (In press)Google Scholar
  12. Hanson, R. B.: Organic nitrogen and caloric content of detritus. II. Microbial biomass and activity. Estuar. coast. Shelf Sci. 14, 325–336 (1982)Google Scholar
  13. Hargrave, B. T.: Coupling carbon flow through some pelagic and benthic communities. J. Fish. Res. Bd Can. 30, 1317–1326 (1973)Google Scholar
  14. Hargrave, B. T.: Factors affecting the flux of organic matter to sediments in a marine bay. In: Marine benthic dynamics, pp 243–263. Ed. by K. R. Tenore and B. C. Coull. Columbia: Univ. South Carolina Press 1980Google Scholar
  15. Hobro, R., U. Larsson and F. Wulff: Dynamics of a phytoplankton spring bloom in a coastal area of the Northern Baltic. As cited by Jansson, 1978Google Scholar
  16. Ivlev, V. S.: Eine Mikromethode zur Bestimmung des Kaloriengehalts von Nährstoffen. Biochem. Zeitschr. 275, 51–55 (1934)Google Scholar
  17. Jansson, B.-O.: The Baltic — a systems analysis of a semi-enclosed sea. In: Advances in oceanography, pp 131–183. Ed. by H. Charnock and G. Deacon. New York: Plenum Publishing Corporation 1978Google Scholar
  18. Jørgensen, B. B. and T. Fenchel: The sulfur cycle of a marine sediment model system. Mar. Biol. 24, 189–201 (1974)Google Scholar
  19. Kemp, W. M. and W. R. Boynton: External and internal factors regulating metabolic rates of an estuarine benthic community. Oecologia 51, 19–27 (1981)Google Scholar
  20. Krey, J., J. Lenz and B. Babenerd: Beobachtungen zur Produktionsbiologie des Planktons in der Kieler Bucht: 1957–1975. Ber. Inst. Meeresk. Univ. Kiel Nr. 54 p. 113 (1978)Google Scholar
  21. Kuipers, B. R., P. A. W. J. de Wilde and F. Creutzberg: Energy flow in a tidal flat ecosystem. Mar. Ecol Prog. Ser. 5, 215–221 (1981)Google Scholar
  22. Meyer-Reil, L.-A.: Enzymatic decomposition of proteins and carbohydrates in marine sediments: methodology and field observations during spring. Kieler Meeresforsch. Sh. 5, 311–317 (1981)Google Scholar
  23. Meyer-reil, L.-A.: Benthic response to sedimentation events during autumn to spring at a shallow-water station in the Western Kiel Bight: II. Analysis of benthic bacterial populations. Mar. Biol. (In press)Google Scholar
  24. Packard, T. T., P. C. Garfield and R. Martinez: Respiration and respiratory enzyme activity in aerobic and anaerobic cultures of marine denitrifying bacterium, Pseudomonas perfectomarinus. Deep Sea Res. 30, 227–243 (1983)Google Scholar
  25. Pamatmat, M. M.: Benthic community metabolism: a review and assessment of present status and outlook. In: Ecology of marine benthos, pp 89–111. Ed. by B. C. Coull. Columbia: Univ. South Carolina Press 1977Google Scholar
  26. Pamatmat, M. M.: Heat production by sediment: ecological significance. Science, N.Y. 215, 395–397 (1982)Google Scholar
  27. Pamatmat, M. M., G. Graf, W. Bengtsson and C. S. Novak: Heat production, ATP concentration and electron transport activity of marine sediments. Mar. Ecol. Prog. Ser. 4, 135–143 (1981)Google Scholar
  28. Peinert, R., A. Saure, P. Stegmann, C. Stienen, H. Haardt and V. Smetacek: Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16, 276–289 (1982)Google Scholar
  29. Pollehne, F.: Die Sedimentation organischer Substanz, Remineralisation und Nährsalzrückführung in einem marinen Flachwasserökosystem. Ph. D. thesis, Kiel University, 149 pp. 1981Google Scholar
  30. Reimers, T.: Anoxische Lebensräume: Struktur und Entwicklung der Mikrobiozönose an der Grenzfläche Meer/Meeresboden. Ph. D. thesis, Kiel University, 134 pp. 1976Google Scholar
  31. Schomann, H.: Qualitative und quantitative Untersuchungen an der erranten Vegetationskomponente im Phytobenthos der Westlichen Ostsee. Ms. thesis, Kiel University, 90 pp. 1977Google Scholar
  32. Schulz, R.: Die Wirkung von Sedimentationsereignissen auf die benthische Lebensgemeinschaft. Ph. D. thesis, Kiel University, 116 pp. 1983Google Scholar
  33. Skjoldal, H. R. and C. Lännergren: The spring phytoplankton bloom in Lindaspollene, a land-locked Norwegian fjord. II. Biomass and activity of net- und nanoplankton. Mar. Biol. 47, 312–323 (1978)Google Scholar
  34. Smetacek, V.: Die Sukzession des Phytoplanktons in der westlichen Kieler Bucht. Ph. D. thesis, Kiel University, 151 pp. 1975Google Scholar
  35. Smetacek, V.: Annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight. Ophelia 1, Suppl., 65–76 (1980)Google Scholar
  36. Smetacek, V., K. v. Bröckel, B. Zeitzschel and W. Zenk: Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Mar. Biol. 47, 211–226 (1978)Google Scholar
  37. Smetacek, V. and P. Hendrikson: Composition of particulate organic matter in Kiel Bight in relation to phytoplankton succession. Oceanol. Acta 2, 287–298 (1979)Google Scholar
  38. Tabor, P. S. and R. A. Neihof: Improved method for determination of respiring individual microorganisms in natural waters. Appl. environ. Microbiol. 43, 1249–1255 (1982)Google Scholar
  39. Walsh, J. J.: Shelf-sea ecosystems. In: Analysis of marine ecosystems, pp 159–196, Ed. by A. R. Longhurst. New York: Academic Press 1981Google Scholar
  40. Webster, T. J. M., M. A. Paranjape and K. H. Mann: Sedimentation of organic matter in St. Margaret's Bay, Nova Scotia. J. Fish. Res. Bd Can. 32, 1399–1407 (1975)Google Scholar
  41. Wiebe, P. H., St. H. Boyd and C. Winget: Particulate matter sinking to the deep-sea floor at 2 000 m in the tongue of the Ocean, Bahamas, with a description of a new sedimentation trap. J. mar. Res. 34, 341–354 (1976)Google Scholar
  42. Wittstock, R. R.: Zu den Ursachen bodennaher Strömungsschwankungen in der nördlichen Kieler Bucht. Ph. D. thesis, Kiel University, 105 pp. 1982Google Scholar
  43. Yingst, J. Y. and D. C. Rhoads: The role of bioturbation in the enhancement of microbial turnover rates in marine sediments. In: Marine benthic dynamics, pp 407–421. Ed. by K. R. Tenore and B. C. Coull. Columbia: Univ. South Carolina Press 1980Google Scholar
  44. Zeitzschel, B., P. Diekmann and L. Uhlmann: A new multisample sediment trap. Mar. Biol. 45, 285–288 (1978)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Graf
    • 1
  • R. Schulz
    • 1
  • R. Peinert
    • 1
  • L.-A. Meyer-Reil
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKiel 1Germany (FRG)

Personalised recommendations