Advertisement

Marine Biology

, Volume 77, Issue 3, pp 221–227 | Cite as

Neoplasia, regeneration and growth in the reef-building coral Acropora palmata

  • R. P. M. Bak
Article

Abstract

Abnormal processes of calcification, such as regenerating lesions and neoplasia, situated near the tips(<25 cm) of colonies of Acropora palmata (Lamarck) suppressed normal linear growth. Branches having neoplasia at a larger distance from the tip do not grow significantly differently from controls. This indicates a functional minimal area in terms of energy supply. Neoplasia are pure aragonite and have the same coenosteal structure as regenerative skeletal material. Regeneration of tissue as well as tissue+skeleton lesions involves the simultaneous formation of tissue and regenerative skeleton, trapping foreign material under the regenerated surface. Recovery of a damaged surface slows down with time and this may, in other coral species, result in permanent lesions. A. palmata recovered from all lesions (n=32) within 80 d and appears to be a superior regenerator among Caribbean corals. This is consistent with other life-history characteristics of this highly specialized coral species.

Keywords

Large Distance Energy Supply Aragonite Linear Growth Coral Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bak, R. P. M.: The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth. J. Sea Res. 10, 285–337 (1976)Google Scholar
  2. Bak, R. P. M.: Lethal and sublethal effects of dredging on reef corals. Mar. Poll. Bull. 9, 14–16 (1978)Google Scholar
  3. Bak, R. P. M., J. J. W. M. Brouns and F. M. L. Heys: Regeneration and aspects of spatial competition in the scleractinian corals Agaricia agaricites and Montastrea annularis. Proc. Third Int. Coral Reef Symp. Miami, 1, 143–148 (1977)Google Scholar
  4. Bak, R. P. M. and M. S. Engel: Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community. Mar. Biol. 54, 341–352 (1979)Google Scholar
  5. Bak, R. P. M. and Y. Steward-van Es: Regeneration of superficial damage in the scleractinian corals Agaricia agaricites, f. purpurae and Porites astreoides. Bull. mar. Sc. 30, 883–887 (1980)Google Scholar
  6. Bak, R. P. M. and S. R. Criens: Experimental fusion in Atlantic Acropora (Scleractinia). Mar. Biol. Lett. 3, 67–72 (1982a)Google Scholar
  7. Bak, R. P. M. and S. R. Criens: Survival after fragmentation of colonies of Madracis mirabilis, Acropora palmata and A. cervicornis (Scleractinia) and the subsequent impact of a coral disease. Proc. Fourth Int. Symp. Coral Reefs, Manila 1981. 2, 221–227 (1982b)Google Scholar
  8. Buddemeier, R. W. and R. A. Kinzie, III: Coral growth. Oceanogr. mar. biol. Ann. Rev. 14, 183–225 (1976)Google Scholar
  9. Chamberlain, J. A. jr.: Mechanical properties of coral skeleton compressive strength and its adaptive significance. Paleobiol. 4, 419–435 (1978)Google Scholar
  10. Chamberlain, J. A. jr. and R. R. Graus: Water flow and hydromechanical adaptation of branched reef corals. Bull. mar. Sci. 25, 112–125 (1975)Google Scholar
  11. Cheney, D. P.: Hard tissue tumors in scleractinian corals. In: Immunologic phylogeny, pp. 77–85. Ed. by W. H. Hildemann and A. A. Benedict. New York: Plenum Press 1975Google Scholar
  12. Clausen, C. D. and A. A. Roth: Estimation of coral growth rates from laboratory 45Ca incorporation rates. Mar. Biol. 33, 85–91 (1975a)Google Scholar
  13. Clausen, C. D. and A. A. Roth: Effects of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar. Biol. 33, 93–100 (1975b)Google Scholar
  14. Connell, J. H.: Population ecology of reef-building corals. In: Biology and geology of coral reefs, Vol. II, Biology I, pp 205–245. Ed. by O. A. Jones and R. Endean 1973Google Scholar
  15. Dodge, R. E., R. C. Allen and J. Thomson: Coral growth related to resuspension of bottom sediments. Nature, Lond. 247, 574–577 (1974)Google Scholar
  16. Fishelson, L.: Ecology of coral reefs in the Gulf of Aqaba (Red Sea) influenced by pollution. Oecologia 12, 55–67 (1973)Google Scholar
  17. Gladfelter, E. H.: Skeletal development in Acropora cervicornis. I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1, 45–51 (1982)Google Scholar
  18. Gladfelter, E. H., R. K. Monohan and W. B. Gladfelter: Growth rates of five reef-building corals in the northeastern Caribbean. Bull. mar. Sci. 28, 728–732 (1978)Google Scholar
  19. Glynn, P. W., L. Almodovar and J. Gonzales: Effects of hurricane Edith on marine life in La parguera, Puerto Rico. Caribb. J. Sci. 4, 335–345 (1964)Google Scholar
  20. Glynn, P. W. and R. H. Stewart: Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol. Oceanogr. 18, 367–379 (1973)Google Scholar
  21. Goldberg, W. M. and J. C. Makemson: Description of a tumorous condition in a gorgonian coral associated with a filamentous green alga. Proc. Fourth Int. Symp. Coral Reefs, Manila 1981, 2, 685–697 (1982)Google Scholar
  22. Goreau, T. F.: The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals. Biol. Bull. mar. biol. Lab., Woods Hole 116, 59–75 (1959)Google Scholar
  23. Goreau, T. F. and N. I. Goreau: The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol. Bull. mar. biol. Lab., Woods Hole 117, 239–250 (1959)Google Scholar
  24. Highsmith, R. C., A. C. Riggs and C. M. D'Antonio: Survival of hurricane generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia 46, 322–329 (1980)Google Scholar
  25. Highsmith, R. C.: Regeneration by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226 (1982)Google Scholar
  26. Jokiel, P. L. and S. L. Coles: Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208 (1977)Google Scholar
  27. Johnston, I. S.: The ultrastructure of skeletogenesis in hermatypic corals. Int. Rev. Cyt. 67, 171–214 (1980)Google Scholar
  28. Kaufman, L.: There was biological disturbance on pleistocene coral reefs. Paleobiol. 7, 527–532 (1981)Google Scholar
  29. Lauckner, G.: Diseases of Cnidaria. In: Diseases of marine animals, Vol. 1, pp 167–237. Ed. O. Kinne. New York: Wiley and Sons 1980Google Scholar
  30. Loya, Y.: Skeletal regeneration in a Red Sea scleractinian coral population. Nature, Lond. 261, 490–491 (1976)Google Scholar
  31. Morse, D. E., A. N. C. Morse and H. Duncan: Algal “tumors” in the Caribbean sea-fan, Gorgonia ventalina. Proc. Third Int. Coral Reef Symp., Miami, Florida 1, 623–629 (1977)Google Scholar
  32. Morse, D. E., A. Morse, H. Duncan and R. K. Trench: Algal “tumors” in the Caribbean Octacorallian, Gorgonia ventalina. II. Biochemical characterization of the algae, and first epidemiological observations. Bull. mar. Sci. 31, 399–409 (1981)Google Scholar
  33. Potts, D. C.: Suppression of coral populations by filamentous algae within damselfish territories. J. exp. mar. Biol. Ecol. 28, 207–216 (1977)Google Scholar
  34. Squires, D. F.: Neoplasia in a coral? Science, N.Y. 148, 503–505 (1965a)Google Scholar
  35. Squires, D. F.: Abnormal corallites. Science, N.Y. 150, 78 (1965b)Google Scholar
  36. Stephenson, T. A. and A. Stephenson: Growth and asexual reproduction in corals. Scient. Rep. Gr. Barrier Exped. 3, 167–217 (1933)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. P. M. Bak
    • 1
    • 2
  1. 1.Caribbean Marine Biological Institute (CARMABI)CuraçaoNetherlands Antilles
  2. 2.Netherlands Institute for Sea Research (NIOZ)TexelThe Netherlands

Personalised recommendations