, Volume 161, Issue 2, pp 142–147 | Cite as

Nitrogen nutrition and the accumulation of free and sinapoyl-bound malic acid in Raphanus sativus cotyledons

  • Brigitte Dahlbender
  • Dieter Strack


Seedlings of red radish (Raphanus sativus L. var. sativus) accumulated high amounts of free malic acid and sinapoylmalate, when grown on nitrate as the sole N-source. In the presence of ammonium (NO 3 : NH 4 + , 1:2) both metabolites failed to accumulate, and the levels of arginine, asparagine, glutamine, histidine, and serine were greatly increased. The extractable activity of 1-sinapoylglucose: l-malate sinapoyltransferase, an enzyme which plays a key role in channelling malic acid into the sinapic-acid metabolism of this plant, was positively correlated with the malic-acid level in cotyledons. The possibility is discussed that free malic acid might be the likely candidate for regulating the activity of 1-sinapoylglucose: l-malate sinapoyltransferase.

Key words

Malic acid Nitrogen nutrition Raphanus 1-Sinapoylglucose l-malate sinapoyl-transferase (control) 



sinapoylglucose: L-malate sinapoyltransferase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmann, L., Große, W., Koth, P. (1976) Einfluß von Ammonium und Nitrat auf Stickstoff-Metabolismus, Malatanhäufung und Malatenzym-Aktivität in Suspensionskulturen von Nicotiana tabacum var. “Samsun”. Z. Pflanzenphysiol. 80 60–70Google Scholar
  2. Bruinsma, J. (1961) A comment on the spectrophotometric determination of chlorophyll. Biochim. Biophys. Acta 52, 576–578Google Scholar
  3. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356Google Scholar
  4. Givan, C.V. (1979) Metabolic detoxification of ammonia in tissues of higher plants. Phytochemistry 18, 375–382Google Scholar
  5. Goyal, S.S., Huffaker, R.C., Lorenz, O.A. (1982a) Inhibitory effects of ammoniacal nitrogen on growth of radish plants. II. Investigation on the possible causes of ammonia toxicity to radish plants and its reversal by nitrate. J. Am. Soc. Hortic. Sci. 107, 130–135Google Scholar
  6. Goyal, S.S., Lorenz, O.A., Huffaker, R.C. (1982b) Inhibitory effects of ammoniacal nitrogen on growth of radish plants. I. Characterization of toxic effects of NH4+ on growth and its alleviation by NO3. J. Am. Soc. Hortic. Sci. 107, 125–129Google Scholar
  7. Graham, D. (1980) Effects of light on “dark” respiration. In: The biochemistry of plants, vol. 2: Metabolism and respiration pp. 525–579, Davis, D.D., ed. Academic Press, New York London TorontoGoogle Scholar
  8. Gülz, P.-G. (1982) Composition of epicuticular waxes from fruits of jojoba (Simmondsia chinesis (Link) Schneider). Z. Naturforsch. Teil C 37, 1053–1056Google Scholar
  9. Hoff, J.E., Wilcox, G.E., Jones, C.M. (1974) The effect of nitrate and ammonium nitrogen on the free amino acid composition of tomato plants and tomato fruit. J. Am. Soc. Hortic. Sci. 99, 27–30Google Scholar
  10. Krause, J. (1978) Die Zimtsäurederivate von Spirodela polyrrhiza (L.) Schleiden. Z. Pflanzenphysiol. 88, 465–470Google Scholar
  11. Linscheid, M., Wendisch, D., Strack, D. (1980) The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Z. Naturforsch. Teil C 35, 907–914Google Scholar
  12. Lips, S.H., Beevers, H. (1966) Compartmentation of organic acids in corn roots. I. Different labeling of 2 malate pools. Plant Physiol. 41, 709–712Google Scholar
  13. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Dandall, R.J. (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275Google Scholar
  14. Marques, I.A., Oberholzer, M.J., Erismann, K.H. (1983) Effects of different inorganic nitrogen sources on photosynthetic carbon metabolism in primary leaves of non-nodulated Phaseolus vulgaris L. Plant Physiol. 71, 555–561Google Scholar
  15. Möllering, H. (1974) Bestimmung der Malat-Dehydrogenase and Glutamat-Oxalacetat Transaminase. In: Methods of enzymatic analysis, 3d edn., vol. 2, pp. 1636–1639, Bergmeyer, H.U., ed. Verlag Chemie, Weinheim; Academic Press, New York LondonGoogle Scholar
  16. Nurmann, G., Strack, D. (1979) Sinapine estrase. I. Characterization of sinapine esterase from cotyledons of Raphanus sativus. Z. Naturforsch. Teil C 34, 715–720Google Scholar
  17. Nurmann, G., Strack, D. (1979) Formation of 1-sinapyolglucose by UDP-glucose: sinapicbacid glucosyltransferase from cotyledons of Raphanus sativus. Z. Pflanzenphysiol. 102, 11–17Google Scholar
  18. Rosen, H., Berard, C.W., Leverson, S.M. (1962) A simplified procedure for automatic amino acid analysis. Anal. Biochem. 4, 213–221Google Scholar
  19. Skokut, T.A., Wolk, C.P., Thomas, J., Meeks, J.C., Shaffer, P.W., Chien, W.-S. (1978) Initial organic products of assimilation of (13N)ammonium and (13N)nitrate by tobacco cells cultured on different sources of nitrogen. Plant Physiol. 62, 299–304Google Scholar
  20. Strack, D. (1977) Sinapic acid ester fluctuations in cotyledons of Raphanus sativus. Z. Pflanzenphysiol. 84, 139–145Google Scholar
  21. Strack, D. (1980) Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell-free system from Raphanus sativus seedlings. Z. Naturforsch. Teil C 35, 204–208Google Scholar
  22. Strack, D. (1981) Sinapine as a supply of choline for the biosynthesis of phosphatidylcholine in Raphanus sativus seedlings. Z. Naturforsch. Teil C 36, 215–221Google Scholar
  23. Strack, D. (1982) Development of 1-O-sinapoyl-β-D-glucose: L-malate sinapoyltransferase activity in cotyledons of red radish (Raphanus sativus L. var. sativus). Planta 155, 31–36Google Scholar
  24. Strack, D., Dahlbender, B., Grotjahn, L., Wray, V. (1984) 1,2-Disinapoylglucose accumulated in cotyledons of darkgrown Raphanus sativus seedlings. Phytochemistry 23, 657–659Google Scholar
  25. Strack, D., Nurmann, G., Sachs, G. (1980) Sinapine esterase. II. Specificity and change of sinapine esterase activity during germination of Raphanus sativus. Z. Naturforsch. Teil C 35, 963–966Google Scholar
  26. Strack, D., Tkotz, N., Klug, M. (1978) Phenylpropanoid metabolism in cotyledons of Raphanus sativus and the effect of competitive in vivo inhibition of l-phenylalanine ammonialyase (PAL) by hydroxylamine derivatives. Z. Pflanzenphysiol. 89, 343–353Google Scholar
  27. Tkotz, N., Strack, D. (1980) Enzymatic synthesis of sinapoyl-l-malate from 1-sinapoylglucose and l-malate by a protein preparation from Raphanus sativus cotyledons. Z. Naturforsch. Teil C 35, 835–837Google Scholar
  28. Tutschek, R., Meier, K.D., Grüning, F., Stubba, W. (1977) Amino acid analysis of physiological fluids by a single-column programme based on stepwise elution with lithium citrate. J. Chromatogr. 139, 211–214Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Brigitte Dahlbender
    • 1
  • Dieter Strack
    • 1
  1. 1.Botanisches Institut der Universität KölnKöln 41Federal Republic of Germany

Personalised recommendations