, Volume 165, Issue 2, pp 170–184 | Cite as

The cellular parameters of leaf development in tobacco: a clonal analysis

  • R. S. Poethig
  • I. M. Sussex


The cellular parameters of leaf development in tobacco (Nicotiana tabacum L.) have been characterized using clonal analysis, an approach that provides unequivocal evidence of cell lineage. Our results indicate that the tobacco leaf arises from a group of around 100 cells in the shoot apical meristem. Each of these cells contributes to a unique longitudinal section of the axis and transverse section of the lamina. This pattern of cell lincage indicates that primordial cells contribute more or less equally to the growth of the axis, in contrast to the more traditional view of leaf development in which the leaf is pictured as arising from a group of apical initials. Clones induced prior to the initiation of the lamina demonstrate that the subepidermal layer of the lamina arises from at least six files of cells. Submarginal cells usually divide with their spindles parallel to the margin, and therefore contribute relatively little to the transverse expansion of the lamina. During the expansion of the lamina the orientation and frequency of cell division are highly regulated, as is the duration of meristematic growth. Initially, cell division is polarized so as to produce lineages that are at an oblique angle to the midrib; later cell division is in alternating perpendicular planes. The distribution of clones generated by irradiation at various stages of development indicates that cell division ceases at the tip of the leaf when the leaf is about one tenth its final size, and then ceases in progressively more basal regions of the lamina. Variation in the mutation frequency within the lamina reflects variation in the frequency of mitosis. Prior to the mergence of the leaf the frequency of mutation is maximal near the tip of the leaf and extremely low at its base; after emergence, the frequency of mutation increases at the base of the leaf. In any given region of the lamina the frequency of mutation is highest in interveinal regions, and is relatively low near the margin. Thus, both the orientation and frequency of cell division at the leaf margin indicate that this region plays a minor role in the growth of the lamina.

Key words

Cell lineage Clonal analysis Leaf development Mutation (somatic) Nicotiana (leaf growth) Somatic mutation 



mutation frequency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avery, G.S. (1933) Structure and development of the tobacco leaf. Am. J. Bot. 20, 565–592Google Scholar
  2. Bensink, J. (1971) On the morphogenesis of leaves in relation to light and temperature. Meded. Landbouwhogeschool Wageningen 71, No. 15Google Scholar
  3. Bryant, P.J. (1970) Cell lineage relationships in the imaginal wing disc of Drosophila melanogaster. Dev. Biol. 22, 389–441Google Scholar
  4. Coe, E.H. (1978) The aleurone tissue of maize as a genetic tool. In: Maize breeding and genetics, pp. 447–459, Walden, D.B., ed. Wiley-Interscience, New YorkGoogle Scholar
  5. Coe, E.H. Neuffer, M.G. (1978) Embryo cells and their destinies in the corn plant. In: The clonal basis of development, pp. 113–129, Subtelny, S., Sussex, I., eds. Academic Press, New YorkGoogle Scholar
  6. Deshayes, A. (1973) Mise en évidence d'une corrélation entre la fréquence de variations somatiques sur feuilles et l'état physiologique d'un mutant chlorophyllien monogénique chez Nicotiana tabacum var. Samsun. Mutat. Res. 17, 323–334Google Scholar
  7. Deshayes, A., Dulieu H. (1974) Étude des variations somatiques de deux mutants chlorophylliens de Nicotiana tabacum L., leur nature génétique et les facteurs les favorisent. In: Polyploids and induced mutations in plant breeding, pp. 85–99. International Atomic Energy Agency, ViennaGoogle Scholar
  8. Dewey, W.C., Furman S.C., Miller, H.H. (1970) Comparison of lethality and chromosomal damage induced by X-rays in synchronized chinese hamster cells in vitro. Radiat. Res. 43, 561–581Google Scholar
  9. Dubuc-Lebreux, M.A., Sattler, R. (1980) Développement des organes foliacés chez Nicotiana tabacum et le problème des méristèmes marginaux. Phytomorphology 30, 17–32Google Scholar
  10. Dulieu, H. (1968) Emploi des chimères chlorophylliennes pour l'étude de l'ontogénie foliare. Bull. Sci. Bourgogne 25, 1–60Google Scholar
  11. Dulieu, H. (1970) Les mutations somatiques induites et l'ontogénie de la pousse feuillee. Ann. Amelior. Plant. 20, 27–44Google Scholar
  12. Dulieu, H. (1975) Somatic variations on a yellow mutant in Nicotiana tabacum L. (a1 +/a1 a2 +/a2). I. Non-reciprocal genetic events occurring in leaf cells. Mutat. Res. 25, 289–304Google Scholar
  13. Dulieu, H. (1975) Somatic variations on a yellow mutant in Nicotiana tabacum L. (a1 +/a1 a2 +/a2). II. Reciprocal genetic events occurring in leaf cells. Mutat. Res. 28, 69–77Google Scholar
  14. Dulieu, H., Dalebroux, M.A. (1976) Composantes de variabilité et interactions fonctionnelles aux loci a1 +/a1 et a2 +/a2 de Nicotiana tabacum L. Ann. Amelior. Plant. 26, 569–577Google Scholar
  15. Evans, D.A., Paddock, E.F. (1977) X-ray induced increase of mitotic crossovers in Nicotiana tabacum. Environ. Exp. Bot. 17, 99–106Google Scholar
  16. Evans, H.J., Scott, D. (1964) Influence of DNA synthesis on the production of chromatid aberrations by X-rays and maleic hydrazide in Vicia faba. Genetics 49, 17–38Google Scholar
  17. Fuchs, C. (1966) Observations sur l'extension en largeur du limbe foliaire du Lupinus albus L. C.R. Acad. Sci. Ser. D 263, 1212–1215Google Scholar
  18. Fuchs, C. (1975) Ontogenèse foliare et acquisition de la forme chez le Tropaeolum peregrinum L. I. Les premiers stades de l'ontogenèse du lobe médian. Ann. Sci. Nat. Bot. Biol. Veg. 16, 321–390Google Scholar
  19. Fuchs, C. (1976) Ontogenèse foliare et acquisition de la forme chez le Tropeolum peregrinum L. II. Le développement du lobe après la formation de lobules. Ann. Sci. Nat. Bot. Biol. Veg. 17, 121–158Google Scholar
  20. Garcia-Bellido, A. (1975) Genetic control of wing disc development in Drosophila. In: Cell Patterning, Ciba Foundation Symp. Vol. 29, pp. 161–182. Elsevier, New YorkGoogle Scholar
  21. Green, P.B. (1984) Shifts in plant cell axiality: histogenetic influence on cellulose orientation in the succulent, Graptopetalum. Dev. Biol. 103, 18–27Google Scholar
  22. Green, P.B., Brooks, K.E. (1978) Stem formation from a succulent leaf: its bearing on theories of axiation. Am. J. Bot. 65, 13–26Google Scholar
  23. Green, P.B., Lang, J.M. (1981) Toward a biophysical theory of organogenesis: birefringence observations on regenerating leaves in the succulent Graptopetalum paraguayense E. Walther. Planta 151, 413–426Google Scholar
  24. Green, P.B., Poethig, R.S. (1982) Biophysics of the extension and initiation of plant organs. In: Developmental order: Its origin and regulation, pp. 485–509, Subtelny S., Green, P.B., eds. A.R. Liss, New YorkGoogle Scholar
  25. Gudkov, I.N., Grodzinsky, D.M. (1982) Cell radiosensitivity variation in synchronously dividing root meristems of Pisum sativum L. and Zea mays L. during the mitotic cycle. Int. J. Radiat. Biol. 41, 401–409Google Scholar
  26. Haber, A.H. (1962) Nonessentiality of concurrent cell divisions for degree of polarization of leaf growth. I. Studies with radiation induced mitotic inhibition. Am. J. Bot. 49, 583–589Google Scholar
  27. Haber, A.H., Foard, D.E. (1963) Nonessentiallity of concurrent cell divisions for degree of polarization of leaf growth. II. Evidence from untreated plants and chemically induced changes in the degree of polarization. Am. J. Bot. 50, 937–944Google Scholar
  28. Hardham, A.R., Green, P.B., Lang, J.M. (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation in Graptopetalum paraguayense. Planta 149, 181–195Google Scholar
  29. Jeune, B. (1972) Observations et expérimentation sur les feuilles juveniles du Paulownia tomentosa. Bull. Soc. Bot. France 119, 215–230Google Scholar
  30. Jeune, B. (1982) Morphogénèse des feuilles et stipules de Castanea sativa Miller. Bull. Mus. Natn. Hist. Nat., Paris, Sect. B, Adansonia 4, 85–101Google Scholar
  31. Johri, M.M., Coe, E.H. (1983) Clonal analysis of corn plant development. I. The development of the tassel and ear shoot. Dev. Biol. 97, 154–172Google Scholar
  32. Maksymowych, R. (1963) Cell division and cell elongation in leaf development of Xanthium pensylvanicum. Am. J. Bot. 50, 891–901Google Scholar
  33. Maksymowych, R., Erickson, R.O. (1960) Development of the lamina in Xanthium italicum represented by the plastochron index. Am. J. Bot. 47, 451–459Google Scholar
  34. Mericle, L.W., Mericle, R.P. (1969) Induced somatic mutations for interpreting floral development and inflorescence aging. In: Induced mutations in plants, pp. 591–601. International Atomic Energy Agency, ViennaGoogle Scholar
  35. Poethig, R.S. (1984a) Cellular parameters of leaf morphogenesis in maize and tobacco. In: Contemporary problems in plant anatomy, pp. 235–259, White, R.A., Dickison, W.C., eds. Academic Press, New YorkGoogle Scholar
  36. Poethig, R.S. (1984b) Patterns and problems in angiosperm leaf morphogenesis. In: Pattern formation, pp. 413–432, Malacinski, G.M. Bryant, S.V., eds. MacMillan, New YorkGoogle Scholar
  37. Poethig, R.S., Sussex, I.M. (1985) The developmental morphology and growth dynamics of the tobacco leaf. Planta 165, 158–169Google Scholar
  38. Sachs, T. (1969) Regeneration experiments on the determination of the form of leaves. Israel. J. Bot. 18, 21–30Google Scholar
  39. Sand, S.A. (1957) Phenotypic variability and the influence of temperature on somatic instability in cultures derived from hybrids between Nicotiana langsdorffii and N. sanderae. Genetics 42, 685–703Google Scholar
  40. Scott, D., Evans, H.J. (1967) X-ray induced chromosome aberrations in Vicia faba: changes in response during the cell cycle. Mutat. Res. 4, 579–599Google Scholar
  41. Sax, K. (1940) An analysis of X-ray induced chromosomal aberrations in Tradescantia. Genetics 25, 41–68Google Scholar
  42. Sinnott, E.W. (1960) Plant morphogenesis. McGraw-Hill, New YorkGoogle Scholar
  43. Snow, M. and Snow, R. (1933) Experiments on phyllotaxis. II. The effect of displacing a primordium. Phil. Trans. R. Soc. London Ser. B 222, 353–400Google Scholar
  44. Sparrow, A.H. (1951) Radiation sensitivity of cells during mitotic and meiotic cycles with emphasis on possible cytochemical changes. Ann. N.Y. Acad. Sci. 51, 1508–1540Google Scholar
  45. St. Amand, W. (1956) Mitotic inhibition and chromosome breakage induced in grasshopper neuroblasts by X-irradiation at known mitotic stages. Radiat. Res. 5, 65–78Google Scholar
  46. Stadler, L.J. (1930) Some genetic effects of X-rays in plants. J. Hered. 21, 3–19Google Scholar
  47. Stein, O.L., Steffensen, D.M. (1959) The activity of X-rayed apical meristems: a genetic and morphogenetic analysis in Zea mays. Z. Vererbungsl. 90, 483–502Google Scholar
  48. Steffensen, D.M. (1968) A reconstruction of cell development in the shoot apex of maize. Am. J. Bot. 55, 354–369Google Scholar
  49. Stewart, R.N., Burk, L.G. (1970) Independence of tissues derived from apical layers in ontogeny of the tobacco leaf and ovary. Am. J. Bot. 57, 1010–1016Google Scholar
  50. Thomasson, M. (1970) Quelques observations sur la répartition de zones de croissance de la feuille du Jasminum nudiflorum Lindl. Candollea 25, 297–340Google Scholar
  51. von Papen, R. (1935) Beiträge zur Kenntnis des Wachstums der Blattspreite. Bot. Arch. 37, 159–206Google Scholar
  52. Wolff, S. (1968) Chromosomal aberrations and the cell cycle. Radiat. Res. 33, 609–619Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. S. Poethig
    • 1
  • I. M. Sussex
    • 1
  1. 1.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations