Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels

Abstract

Undescribed hydrocarbon-seep mussels were collected from the Louisiana Slope, Gulf of Mexico, during March 1986, and the ultrastructure of their gills was examined and compared to Bathymodiolus thermophilus, a mussel collected from the deep-sea hydrothermal vents on the Galápagos Rift in March 1985. These closely related mytilids both contain abundant symbiotic bacteria in their gills. However, the bacteria from the two species are distinctly different in both morphology and biochemistry, and are housed differently within the gills of the two mussels. The symbionts from the seep mussel are larger than the symbionts from B. thermophilus and, unlike the latter, contain stacked intracytoplasmic membranes. In the seep mussel three or fewer symbionts appear to be contained in each host-cell vacuole, while in B. thermophilus there are often more than twenty bacteria visible in a single section through a vacuole. The methanotrophic nature of the seep-mussel symbionts was confirmed in 14C-methane uptake experiments by the appearance of label in both CO2 and acid-stable, non-volatile, organic compounds after a 3 h incubation of isolated gill tissue. Furthermore, methane consumption was correlated with methanol dehydrogenase activity in isolated gill tissue. Activity of ribulose-1,5-biphosphate (RuBP) carboxylase and 14CO2 assimilation studies indicate the presence of either a second type of symbiont or contaminating bacteria on the gills of freshly captured seep mussels. A reevaluation of the nutrition of the symbionts in B. thermophilus indicates that while the major symbiont is not a methanotroph, its status as a sulfur-oxidizing chemoautotroph, as has been suggested previously, is far from proven.

This is a preview of subscription content, log in to check access.

Literature cited

  1. anthony, C.: The biochemistry of methylotrophs, 431 pp. London: Academic Press 1982

  2. Anthony, C. and L. J. Zatman: The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem. J. 96, 808–812 (1965)

  3. Belkin, S., D. C. Nelson and H. W. Jannasch: Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. mar. biol. Lab., Woods Hole. 170, 110–121 (1986)

  4. Bonjour, F. and M. Aragno: Growth of thermophilic, obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. Fedn eur. microbiol. Soc. (FEMS) Lett. 35, 11–15 (1986)

  5. Bracke, J. W., D. L. Cruden and A. J. Markovetz: Intestinal microbial flora of the American cockroach, Periplaneta americana. Appl. envirl Microbiol. 38, 945–955 (1979)

  6. Cavanaugh, C. M.: Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, Lond. 302, 58–61 (1983)

  7. Cavanaugh, C. M.: Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. In: The hydrothermal vents of the eastern Pacific: an overview. Bull. biol. Soc. Wash. 1985 (6), 373–388 (1985)

  8. Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch and J. B. Waterbury: Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213, 340–342 (1981)

  9. Cavanaugh, C. M., R. R. Levering, J. S. Maki, R. Mitchell and M. E. Lidstrom: Symbiosis of methylotrophic bacteria and deepsea mussels. Nature, Lond. 325, 346–348 (1987)

  10. Childress, J. J., A. J. Arp and C. R. Fisher, Jr.: Metabolic and blood characteristics of the hydrothermal vent tube-worm Riftia pachyptila. Mar. Biol. 83, 109–124 (1984)

  11. Childress, J. J., C. R. Fisher, J. M. Brooks, M. C. Kennicutt II, R. R. Bidigare and A. E. Anderson: A methanotrophic marine molluscan (Bivalvia: Mytilidae) symbiosis: mussels fueled by gas. Science, N. Y. 233, 1306–1308 (1986)

  12. Childress, J. J. and T. J. Mickel: Oxygen and sulfide consumption rates of the vent clam Calyptogena pacifica. Mar. Biol. Lett. 3, 73–79 (1982)

  13. Culbertson, C. W., A. K. B. Zehnder and R. S. Oremland: Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Appl. envirl Microbiol. 41, 396–403 (1981)

  14. Dando, P. R., A. J. Southward and E. C. Southward: Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc. R. Soc. (Ser. B) 227, 227–247 (1986)

  15. Dando, P. R., A. J. Southward, E. C. Southward, N. B. Terwilliger and R. C. Terwilliger: Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar. Ecol. Prog. Ser. 23, 85–98 (1985)

  16. Desbruyères, D., P. Crassous, J. Grassle, A. Khripounoff, D. Reyss, M. Rio et M. van Praet: Données écologiques sur un nouveau site d'hydrothermalisme actif de la ride du Pacifique oriental. C. r. hebd. Séanc. Acad. Sci. Paris (Sér. III) 295 489–494 (1982)

  17. Felbeck, H.: Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213, 336–338 (1981)

  18. Felbeck, H., J. J. Childress and G. N. Somero: Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature, Lond. 293, 291–293 (1981)

  19. Felbeck, H., G. Liebezeit, R. Dawson and O. Giere: CO2 fixation in tissues of marine oligochates (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol. 75, 187–191 (1983a)

  20. Felbeck, H., G. N. Somero, and J. J. Childress: Biochemical interactions between molluscs and their algal and bacterial symbionts. In: The Mollusca, Vol. 2. pp 331–358. Ed. by P. W. Hochachka. New York: Academic Press 1983b

  21. Fiala-Médioni, A., C. Métivier, A. Herry and M. Le Pennec: Ultrastructure of the gill of the hydrothermal-vent mytilid Bathymodiolus sp. Mar. Biol. 92, 65–72 (1986)

  22. Fisher, C. R. and J. J. Childress: Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (phylum Pogonophora). Mar. Biol. Lett. 5, 171–183 (1984)

  23. Fisher, M. R. and S. C. Hand: Chemoautotrophic symbionts in the bivalve Lucina floridana from seagrass beds. Biol. Bull. mar. biol. Lab., Woods Hole 167, 445–459 (1984)

  24. Goldberg, I.: Purification and properties of a methanol-oxidizing enzyme in Pseudomonas C. Eur. J. Biochem. 63, 233–240 (1976)

  25. Hanson, R. S.: Ecology and diversity of methylotrophic organisms. Adv. appl. Microbiol. 26, 3–39 (1980)

  26. Hecker, B.: Fauna from a cold sulfur-seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications. In: The hydrothermal vents of the eastern Pacific: an overview. Bull. biol. Soc. Wash. 1985 (6) 465–473 (1985)

  27. Hessler, R. R. and W. Smithey: The distribution and community structure of megafauna at the Galápagos rift hydrothermal vents. NATO Conf. Ser. (Ser. IV: mar, Sciences) 12, 735–770 (1984)

  28. Hungate, R. E.: The rumen and its microbes, 533 pp. New York: Academic Press 1966

  29. Jones, M. L.: Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos rift. Science, N. Y. 213, 333–336 (1981)

  30. Jones, M. L.: On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. In: The hydrothermal vents of the eastern Pacific: an overview. Bull. biol. Soc. Wash. 1985 (6) 117–158 (1985)

  31. Kennicutt II, M. C., J. M. Brooks, R. R. Bidigare, R. R. Fay, T. L. Wade and T. J. McDonald: Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, Lond. 317, 351–353 (1985)

  32. Kulm, L. D., E. Suess, J. C. Moore, B. Carson, B. T. Lewis, S. D. Ritger, D. C. Kadko, T. M. Thornburg, R. W. Embley, W. D. Rugh, G. J. Massoth, M. G. Langseth, G. R. Cochrane and R. L. Scamman: Oregon subduction zone: venting, fauna, and carbonates. Science, N.Y. 231, 561–566 (1986)

  33. Le Pennec, M. et A. Hily: Anatomie, structure et ultrastructure de la branchie d'un Mytilidae des sites hydrothermaux du Pacifique oriental. Oceanol. Acta 7, 517–523 (1984)

  34. Le Pennec, M. et D. Prieur: Observations sur la nutrition d'un Mytilidae d'un site hydrothermal actif de la dorsale du Pacifique oriental. C. r. hebd. Séanc. Acad. Sci. Paris (Sér. III) 298, 493–498 (1984)

  35. Meyers, A. J.: Evaluation of bromomethane as a suitable analogue in methane oxidation studies. Fedn eur. microbiol. Soc. (FEMS) Lett. 9, 297–300 (1980)

  36. Meyers, A. J.: Obligate methylotrophy: evaluation of dimethylether as a C-1 compound. J. Bact. 150, 966–968 (1982)

  37. Nelson, D. C. and H. W. Jannasch: Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Archs Microbiol. 136, 262–269 (1983)

  38. O'Connor, M. L. and R. S. Hanson: Enzyme regulation in Methylobacterium organophilum. J. gen Microbiol. 101, 327–332 (1977)

  39. Odelson, D. A. and J. A. Breznak: Volatile fatty acid production by the hindgut microbiota of xylophagus termites. Appl. envirl Microbiol. 45, 1602–1613 (1983)

  40. Patel, R. N., H. R. Bose, W. J. Mandy and D. S. Hoare: Physiological studies on methane and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Mithylococcus capsulatus (Texas strain) and Pseudomonas M27. J. Bact. 110, 570–577 (1972)

  41. Patel, R. N. and D. S. Hoare: Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus. J. Bact. 107, 187–192 (1971)

  42. Patel, R. N., C. T. Hou and A. Felix: Microbial oxidation of methane and methanol: crystallization of methanol dehydrogenase and properties of holo- and apo-methanol dehydrogenase from Methylomonas methanica. J. Bact. 133, 641–649 (1978)

  43. Paull, C. K., B. Hecker, R. Commeau, R. P. Freeman-Lynde, C. Neumann, W. P. Corso, S. Golubic, J. E. Hook, E. Sikes and J. Curray: Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science, N.Y. 226, 965–967 (1984)

  44. Powell, M. A. and G. N. Somero: Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol. Bull. mar. biol. Lab., Woods Hole 171, 274–290 (1986)

  45. Quayle, J. R. and D. B. Keech: Carbon dioxide and formate utilization by formate-grown Pseudomonas oxalaticus. Biochim. biophys. Acta 29, 223–225 (1958)

  46. Rau, G. H. and J. I. Hedges: Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science, N.Y. 203, 648–649 (1979)

  47. Richard, J. J., R. D. Vick and G. A. Junk: Determination of elemental sulfur by gas chromatography. Envir. Sci. Technol. 11, 1084–1086 (1977)

  48. Roesijadi, G., J. S. Young, E. Crecelius and L. E. Thomas: Distribution of trace metals in the hydrothermal vent clam, Calyptogena magnifica. In: The hydrothermal vents of the eastern Pacific: an overview. Bull. biol. Soc. Wash. 1985 (6) 311–324 (1985)

  49. Salvas, P. L. and B. F. Taylor: Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria and Methylosinus trichosporium OB3b. Curr. Microbiol. 10, 53–56 (1984)

  50. Shiba, H., T. Dawasumi, Y. Igarashi, T. Kodama and Y. Minoda: The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Archs Microbiol. 141, 198–203 (1985)

  51. Southward, A. J., E. C. Southward, P. R. Dando, G. H. Rau, H. Felbeck and H. Flügel: Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature, Lond. 293, 616–620 (1981)

  52. Sperl, G. T., H. S. Forrest and D. T. Gibson: Substrate specificity of the purified primary alcohol dehydrogenase from methanol-oxidizing bacteria. J. Bact. 118, 541–550 (1974)

  53. Stokes, D. M. and D. A. Walker: Photosynthesis by isolated chloroplasts: inhibition by DL-glyceraldehyde of carbon dioxide assimilation. Biochem. J. 128, 1147–1157 (1972)

  54. Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can. 167, 1–310 (1972)

  55. Stumm, C. K. and K. B. Zwart: Symbiosis of protozoa with hydrogen-utilizing methanogens. Microbiol. Sci. 3, 100–105 (1986)

  56. Suess, E., B. Carson, S. Ritger, J. C. Moore, M. L. Jones, L. D., Kulm and G. R. Cochrabe: Biological communities at vent sites along the subduction zone off Oregon. In: The hydrothermal vents of the eastern Pacific: an overview. Bull. biol. Soc. Wash. 1985 (6) 475–484 (1985)

  57. Topp, E. and R. Knowles: Effects of nitropyrin (2-chloro-6-[trichloromethyl] pyridine) on the obligate methanotroph Methylosinus trichosporium OB3b. Appl. envirl Microbiol. 47, 258–262 (1984)

  58. Trench, R. K.: Dinoflagellates in non-parasitic symbioses In: The biology of dinoflagellates, pp 530–570. Ed. by F. J. R. Taylor. London: Blackwell 1986

  59. Tuttle, J. H. and H. W. Jannasch: Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters. Microb. Ecol. 4, 9–25 (1977)

  60. Van Bruggen, J. J. A., K. B. Zwart, J. G. F. Hermans, E. M. van Hove, C. K. Stumm and G. D. Vogels: Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennersteldt. Archs Microbiol. 144, 367–374 (1986)

  61. Vetter, R. D.: Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88, 33–42 (1985)

  62. Wadzinski, A. M. and D. W. Ribbons: Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase. J. Bact. 122, 1364–1374 (1975)

  63. Williams, P. M., K. L. Smith, E. M. Druffel and T. W. Linick: Dietary carbon sources of mussels and tube worms from Galápagos hydrothermal vents determined from tissue C14 activity. Nature, Lond. 292, 448–449 (1981)

  64. Wishnick, M. and M. D. Lane: Ribulose diphosphate carboxylase from spinach leaves. Meth. Enzym. 23, 570–577 (1971)

  65. Wolf, H. J. and R. S. Hanson: Alcohol dehydrogenase from Methylobacterium organophilum. Appl. envirl Microbiol. 36, 105–114 (1978)

Download references

Author information

Additional information

Communicated by R. S. Carney, Baton Rouge

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fisher, C.R., Childress, J.J., Oremland, R.S. et al. The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Marine Biology 96, 59–71 (1987). https://doi.org/10.1007/BF00394838

Download citation

Keywords

  • Assimilation
  • Thiosulfate
  • 14CO2 Assimilation
  • Hydrothermal Vent
  • Uptake Experiment