Marine Biology

, Volume 100, Issue 4, pp 485–494 | Cite as

Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes?

  • R. J. Rowley


I sampled recruitment of very small sea urchins (Strongylocentrotus spp.) by using the anesthetic magnesium chloride to remove individuals from substrata collected in sea-urchin barren grounds (barrens) and kelp beds at Naples Reef near Santa Barbara, California, USA. Preliminary sampling found low numbers of newly settled individuals(<0.6 mm test diam) from April–July in 1984 and 1985, and in April, 1986. In early May, 1986, I found many newly settled seaurchins (0.3 to 0.6 mm, 5 to 17 d old), and I compared the densities of the cohort on several types of natural substrata in barrens and kelp-bed habitats. Newly settled individuals of both purple sea urchins (S. purpuratus) and red sea urchins (S. franciscanus) were present in similar, high densities (1 000 S. purpuratus m-2) on foliose red algal turf, a dominant substratum ofthe kelp bed, and on crustose coralline algae, the dominant substratum of an adjacent barrens. Larvae of S. purpuratus reared and tested in the laboratory showed high rates of settlement on both red algal turf and on crustose coralline algae, but significantly lower rates on rock. Larvae also settled in response to a partiallypurified extract of coralline algae. The reduced settlement on natural rock surfaces relative to either algal treatment and the significant settlement in response to the extract of coralline algae indicate that larvae discriminate between natural substrata and probably respond to a settlement cue other than, or in addition to, a simple microbial (bacterial) film. The similar densities of young recruits of S. purpuratus on dominant substrata of barrens and kelp bed show that, at least in this case, differential settlement cannot explain the high densities of sea urchins in the barrens habitat. Movement between barrens and kelp bed is unlikely given the small sizes of the newly recruited sea urchins relative to the large distances often involved. Reduced post-settlement mortality of newly settled individuals in the barrens remains the most likely mechanism leading to the higher densities of sea urchins in barrens relative to kelp-bed habitats.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Andrew, N. L., Choat, J. H. (1982). The influence of predation and conspecific adults on the abundance of juvenile Evechinus chloroticus (Echinoidea: Echinometridae). Oecologia 54: 80–87Google Scholar
  2. Andrew, N. L., Choat, J. H. (1985). Habitat related differences in the survivorship and growth of juvenile sea urchins. Mar. Ecol. Prog. Ser. 27: 155–161Google Scholar
  3. Baker, R. J., Nelder, J. A. (1978). The GLIM system. Release 3. Numerical Algorithms Group, OxfordGoogle Scholar
  4. Barker, M. F. (1977). Observations on the settlement of the brachiolaria larvae of Stichaster australis and Coscinasterias calamaria in the laboratory and on the shore. J. exp. mar. Biol. Ecol. 30: 95–108Google Scholar
  5. Barker, M. F. (1979). Breeding and recruitment in a population of the New Zealand starfish Stichaster australis (Verill). J. exp. mar. Biol. Ecol. 41: 195–211Google Scholar
  6. Bernstein, B. B., Jung, N. (1979). Selective pressures and coevolution in a kelp canopy community in southern California. Ecol. Monogr. 49: 335–355Google Scholar
  7. Berstein, B. B., Williams, B. E., Mann, K. H. (1981). The role of behavioral responses to predators in modifying urchins' (Strongylocentrootus droebachiensis) destructive grazing and seasonal foraging patterns. Mar. Biol. 63: 39–49Google Scholar
  8. Bray, R. N. (1981). Influence of water currents and zooplankton densities on daily foraging movements of blacksmith, Chromis punctipinnis, a planktivorous reef fish. Fish. Bull. U.S. 78: 829–841Google Scholar
  9. Breitburg, D. L. (1984). Residual effects of grazing: inhibition of competitor recruitment by encrusting coralline algae. Ecology 65: 1136–1143Google Scholar
  10. Cameron, R. A., Hinegardner, R. (1974). Initiation of metamorphosis in laboratory-cultured sea urchins. Biol. Bull. mar. biol. Lab., Woods Hole 146: 355–342Google Scholar
  11. Cameron, R. A., Schroeter, S. C. (1980). Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser. 2: 243–247Google Scholar
  12. Chapman, A. R. O. (1981). Stability of sea urchin dominated barren grounds following destructive grazing of kelp in St. Margaret's Bay, castern Canada. Mar. Biol. 62: 307–311Google Scholar
  13. Chia, F. S., Young, C. M., McEuen, F. S. (1984). The role of larval settlement behavior in controlling patterns of abundance in echinoderms. In: Engels, W. (ed.) Advances in invertebrate reproduction, Vol. 3. Elsevier, New York, p. 409–424Google Scholar
  14. Connell, J. H. (1975). Some mechanisms producing structure in natural communities; a model and evidence from field experiments. In: Cody, M. L., Diamond, J. M. (eds.) Ecology and evolution of communities. Belknap Press, Cambridge, p. 460–490Google Scholar
  15. Connell, J. H. (1985). The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J. exp. mar. Biol. Ecol. 93: 11–45Google Scholar
  16. Cowen, R. K. (1983). The effect of sheephead (Semicossyphus pulcher) predation on red sea urchin (Strongylocentrotus franciscanus) populations: an experimental analysis. Oecologia 58: 249–255Google Scholar
  17. Dayton, P. K. (1985). Ecology of kelp communities. A. Rev. Ecol. Syst. 16: 215–245Google Scholar
  18. Dayton, P. K., Tegner, M. J. (1984). The importance of scale in community ecology: a kelp forest example with terrestrial analogs. In: Price, P. W., Slobodchikoff, C. N., Gaud, W. S. (eds.) A new ecology: novel approaches to interactive systems. Wiley, New York, p. 457–481Google Scholar
  19. Dean, T. A., Schroeter, S. C., Dixon, J. D. (1984). Effects of grazing by two species of sea urchins (Strongylocentrotus franciscanus and Lytechinus anamesus) on recruitment and survival of two species of kelp (Macrocystis pyrifera and Pterygophora califonica). Mar. Biol. 78: 301–313Google Scholar
  20. Ebeling, A. W., Larson, R. J., Alevizon, W. S. (1980a). Habitat groups and island-mainland distribution of kelp-bed fishes off Santa Barbara, California. In: Power, D. M. (ed.) Multidisciplinary Symposium on the California Islands. Santa Barbara Museum of Natural History, Santa Barbara, California, USA, p. 403–431Google Scholar
  21. Ebeling, A. W., Larson, R. J., Alevizon, W. S., Bray, R. N. (1980b). Annual variability of reef fish assemblages in kelp forests off Santa Barbara, California. Fish. Bull. U.S. 78: 361–377Google Scholar
  22. Ebeling, A. W., Laur, D. R., Rowley, R. J. (1985). Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84: 287–294Google Scholar
  23. Ebeling, A. W., Laur, D. R., Rowley, R. J. (1988). Severe storms, sea urchins, and disturbance-driven kelp forests. (Abstracts and reports from the symposium/workshop on the marine environment of Santa Barbara and its coastal waters, held January 6, 1988, in Santa Barbara.) NOAA natn. mar. Fish. Serv. tech. Memo. U.S. Dep. Commerce (Mar. estuar. Mgmt div.)Google Scholar
  24. Ebert, T. A. (1967). Negative growth and longevity in the purple sea urchin Strongylocentrotus purpuratus. Science N.Y. 157: 557–558Google Scholar
  25. Ebert, T. A. (1968). Growth rates of the sea urchin (Strongylocentrotus purpuratus) related to food availability and spine abrasion. Ecology 49: 1075–1091Google Scholar
  26. Ebert, T. A. (1975). Growth and mortality of post-larvalechinoids. Am. Zool. 15: 755–775Google Scholar
  27. Ebert, T. A. (1982). Longevity, life history, and relative body wall size in sea urchins. Ecol. Monogr. 52: 535–394Google Scholar
  28. Ebert, T. A. (1983). Recruitment in echinoderms. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm studies, Vol. I. Balkema, Rotterdam, p. 169–203Google Scholar
  29. Ebert, T. A., Russell, M. P. (1988). Latitudinal variation in size structure of the west coast purple sea urchin: a correlation with headlands. Limnol. Oceanogr. 33: 286–294Google Scholar
  30. Emlet, R. B., McEdward, L. R., Strathmann, R. R. (1987). Echinoderm larval ecology viewed from the egg. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm studies, Vol. 2. Balkema, Rotterdam, p. 55–136Google Scholar
  31. Estes, J. A., Harrold, C. (1988). Sea otters, sea urchins, and kelp beds: some questions of scale. In: VanBlaricom, G. R., Estes, J. A. (eds.) The community ecology of sea otters. Springer-Verlag, New York, p. 116–150Google Scholar
  32. Foster, M. S., Schiel, D. R. (1985). The ecology of giant kelp forests in California: a community profile. U.S. Fish Wildl. Serv. biol. Rep. 85 (7.2): 1–153Google Scholar
  33. Gaines, S., Roughgarden, J. (1985). Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc. natn. Acad. Sci. U.S.A. 82: 3707–3711Google Scholar
  34. Harrold, C., Reed, D. C. (1985). Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66: 1160–1169Google Scholar
  35. Highsmith, R. C. (1982). Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites: adult sand dollar beds. Ecology 63: 329–337Google Scholar
  36. Himmelman, J. H., Lavergne, Y., Axelsen, F., Cardinal, A., Bourget, E. (1983). Sea urchins in the Saint Lawrence Estuary: their abundance, size-structure, and suitability for commercial exploitation. Can. J. Fish. aquat. Sciences 40: 474–486Google Scholar
  37. Hinegardner, R. T. (1969). Growth and development of the laboratory-cultured sea urchin. Biol. Bull. mar. biol. Lab., Woods Hole 137: 465–475Google Scholar
  38. Jackson, G. A., Winant, C. D. (1983). Effect of a kelp forest on coastal current. Contin. Shelf Res. 2: 75–80Google Scholar
  39. Keough, M. J., Downes, B. J. (1982). Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia 54: 348–352Google Scholar
  40. Lang, C., Mann, K. H. (1976). Changes in sea urchin populations after the destruction of kelp beds. Mar. Biol. 36: 321–326Google Scholar
  41. Laur, D. R., Ebeling, A. W. (1983). Predator-prey relationships in surfperches. Envir. Biol. Fish. 8: 217–229Google Scholar
  42. Laur, D. R., Ebeling, A. W., Coon, D. A. (1988). Effects of sea otter foraging on subtidal reef communities off central California. In: VanBlaricom, G. R., Estes, J. A. (eds.) The community ecology of sea otters. Springer-Verlag, New York, p. 150–168Google Scholar
  43. Lawrence, J. M. (1975). On the relationships between marine plants and seaweeds. Oceanogr. mar. Biol. A. Rev. 13: 213–286Google Scholar
  44. Leahy, P. S. (1986). Laboratory culture of Strongylocentrotus purpuratus adults, embryos and larvae. In: Schroeder, T. E. (ed.) Methods in cell biology. Vol. 27. Academic Press, Orlando, p. 1–13Google Scholar
  45. Luckenbach, M. W. (1984). Settlement and early post-settlement survival in the recruitment of Mulinia lateralis (Bivalvia). Mar. Ecol. Prog. Ser. 17: 245–250Google Scholar
  46. McPherson, B. F. (1965). Contributions to the biology of the sea urchin Tripneustes ventricosus. Bull. mar. Sci. 15: 228–244Google Scholar
  47. Menge, B. A., Sutherland, J. P. (1976). Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity. Am. Nat. 110: 351–369Google Scholar
  48. Menge, B. A., Sutherland, J. P. (1987). Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730–757Google Scholar
  49. Mitchell, R., Kirchman, D. (1984). The microbial ecology of marine surfaces. In: Costlow, J. D., Tipper, R. C. (eds.) Marine biodeterioration; an interdisciplinary study. Naval Institute Press, Annapolis, p. 49–56Google Scholar
  50. Morse, A. N. C., Froyd, C. A., Morse, D. E. (1984). Molecules from cyanobacteria and red algae that induce larval settlement and metamorphosis in the mollusc Haliotis rufescens. Mar. Biol. 81: 293–298Google Scholar
  51. Morse, D. E., Hooker, N., Duncan, H., Jensen, L. (1979). Gammaaminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science, N.Y. 204: 407–410Google Scholar
  52. Neter, J., Wasserman, W. (1974). Applied linear statistical models. R. O. Irwin, Inc., Homewood, IllinoisGoogle Scholar
  53. Paine, R. T. (1977). Controlled manipulations in the marine intertidal zone, and their contributions to ecological theory. Spec. Publs Acad. nat. Sci. Philad. 12: 245–270Google Scholar
  54. Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49: 667–685Google Scholar
  55. Paine, R. T. (1980). Ecological determinism in the competition for space. Ecology 65: 1339–1348Google Scholar
  56. Pearse, J. S., Clark, M. E., Leighton, D. L., Mitchell, C. T., North, W. J. (1970). Marine waste disposal and sea urchin ecology. A. Rep. W. M. Keck Lab. envrl Hlth Engng, Calif. Inst. Technol. Kelp Habit Improvement Project 1969–1970: 1–89Google Scholar
  57. Pearse, J. S., Hines, A. H. (1987). Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar. Ecol. Prog. Ser. 39: 275–283Google Scholar
  58. Raymond, B. G., Scheibling, R. E. (1987). Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Müller) following mass mortalities off Nova Scotia, Canada. J. exp. mar. Biol. Ecol. 108: 31–54Google Scholar
  59. Roughgarden, J., Iwasa, Y., Baxter, C. (1985). Demographic theory for an open marine population with space-limited recruitment. Ecology 66: 54–67Google Scholar
  60. Schiel, D. R., Foster, M. S. (1986). The structure of subtidal algal stands in temperate waters. Oceanogr. mar. Biol. A. Rev. 24: 265–307Google Scholar
  61. Shepherd, S. A., Turner, J. A. (1985). Studies on southern Australian abalone (genus Haliotis). VI. habitat preference, abundance and predators of juveniles. J. exp. mar. Biol. Ecol. 93: 285–298Google Scholar
  62. Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., San FranciscoGoogle Scholar
  63. Swan, E. F. (1958). Growth and variation in sea urchins of York, Marine, J. mar. Res. 17: 505–522Google Scholar
  64. Swan, E. F. (1961). Some observations on the growth rate of sea urchins in the genus Strongylocentrotus. Biol. Bull. mar. biol. Lab., Woods Hole 120: 420–427Google Scholar
  65. Tegner, M. J., Dayton, P. K. (1977). Sea urchin recruitment patterns and implications of commercial fishing. Science, N.Y. 196: 324–326Google Scholar
  66. Tegner, M. J., Dayton, P. K. (1981). Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in a kelp forest. Mar. Ecol. Prog. Ser. 5: 255–268Google Scholar
  67. Trapido-Rosenthal, H. G., Morse, D. E. (1986). Regulation of receptor-mediated settlement and metamorphosis in larvae of a gastropod mollusc (Haliotis rufescens). Bull. mar. Sci. 39: 383–392Google Scholar
  68. Underwood, A. J., Denley, E. J. (1984). Paradigms, explanations, and generalizations in models for the structure of intertidal communities on rocky shores. In: Strong, D. R., Simberloff, D., Abele, L. G., Thistle, A. B. (eds.) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, p. 151–180Google Scholar
  69. Victor, B. (1986). Larval settlement and juvenile mortality in a recruitment-limited coral reef fish population. Ecol. Monogr. 156: 145–160Google Scholar
  70. Wethey, D. S. (1985). Local and regional variation in settlement in the littoral barnacle Semibalanus balanoides (L.): patterns and consequences. In: Moore, P. G., Seed, R. (eds.) The ecology of rocky coasts. Hodder and Stoughton, Toronto, p. 194–202Google Scholar
  71. Woodin, S. A. (1985). Effects of defecation by arenicolid polychaete adults on spionid polychaete juveniles in field experiments: selective settlement or differential mortality. J. exp. mar. Biol. Ecol. 87: 119–132Google Scholar
  72. Woodin, S. A. (1986). Settlement of infauna: larval choice?. Bull. mar. Sci. 39: 401–407Google Scholar
  73. Yool, A. J., Grau, S. M., Hadfield, M. G., Jensen, R. A., Markell, D. A., Morse, D. E. (1986). Excess potassium induces larval metamorphosis in four marine invertebrate species. Biol. Bull. mar. biol. Lab., Woods Hole 170: 255–266Google Scholar
  74. Young, C. M., Chia, F.-S. (1982). Factors controlling spatial distribution of the sea cucumber Psolus chitinoides: settling and postsettling behavior. Mar. Biol. 69: 195–205Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • R. J. Rowley
    • 1
  1. 1.Department of Biological Sciences and Marine Science InstituteUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations