Advertisement

Marine Biology

, Volume 100, Issue 4, pp 455–463 | Cite as

Combined effects of temperature and salinity on fed and starved larvae of the mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas

  • E. His
  • R. Robert
  • A. Dinet
Article

Abstract

The combined effects of temperature, salinity and nutrition on survival and growth of larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas were studied over a period of 7 d in the laboratory. Ripe adults, collected in spring and summer 1987 from natural populations in the Bay of Arcachon, France, were induced to spawn. Larvae of both species were cultured at four temperatures (15°, 20°, 25° and 30°C), four salinities (20, 25, 30 and 35‰S) per temperature, and two levels of nutrition (fed and unfed) per temperature/salinity combination. The fed larvae received a mixed algal diet of 50 cells each of Isochrysis galbana and Chaetoceros calcitrans forma pumilum per microlitre. In both bivalve species, larvae survived over a wide range of temperature and salinity, with the exception of mussel larvae, which died at 30°C. Statistical analysis indicated that nutrition had the greatest effect on larval development, explaining 64 to 75% of the variance in growth of M. galloprovincialis and 54 to 70% in growth of Crassostrea gigas. Unfed mussel larvae displayed little growth. Compared with temperature, the effect of salinity was very slight. M. galloprovincialis larvae exhibited best growth at 20°C and 35‰S and C. gigas at 30°C and 30‰S.

Keywords

Combine Effect Natural Population Bivalve Larval Development Good Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bayne, B. L. (1965). Growth and the delay of metamorphosis of the larvae of Mytilus edulis (L.). Ophelia 2: 1–47Google Scholar
  2. Bayne, B. L. (1983). The physiological ecology of marine molluscan larvae. In: Verdonk, N. H., van den Biggelaar, J. A. M., Tompa, A. (eds.) The Mollusca. Vol. 3. Development. Academic Press, New York, p. 299–343Google Scholar
  3. Bayne, B. L., Gabbott, P. A., Widdows, J. (1975). Some effects of stress in the adult on the eggs and larvae of Mytilus edulis (L.). J. mar. biol. Ass. U.K. 55: 675–689Google Scholar
  4. Berg, C. J. (1971). Review of possible causes of mortality of oyster larvae of the genus Crassostrea in Tomales Bay, California. Calif. Fish Game 57: 69–75Google Scholar
  5. Carlson, B. K. (1982). Settlement and subsequent survival of commercially-reared eyed-pediveliger larvae of the Pacific oyster Crassostrea gigas (Thunberg). J. Shellfish Res. 2: p. 116Google Scholar
  6. Davis, H. C. (1958). Survival and growth of clam and oyster larvae at different salinities. Biol. Bull. mar. biol. Lab., Woods Hole 122: 33–39Google Scholar
  7. Falmagne, C. (1983). Problems associated with the rearing and setting of larvae of the California mussel Mytilus californianus Conrad in a hatchery. J. Shellfish Res. 3: p. 112Google Scholar
  8. Gerdes, D. (1983). The Pacific oyster Crassostrea gigas. Part I. Feeding behaviour of larvae and adults. Aquaculture, Amsterdam 31: 195–219Google Scholar
  9. Helm, M. M., Millican, P. E. (1977). Experiments in the hatchery of Pacific oyster larvae (Crassostrea gigas Thunberg). Aquaculture, Amsterdam 11: 1–12Google Scholar
  10. His, E., Maurer, D., Robert, R. (1986). Observations complémentaires sur les causes possibles des anomalies de la reproduction de Crassostrea gigas (Thunberg) dans le bassin d'Arcachon. Revue Trav. Inst. (scient. tech.) Pêch. marit. 48: 45–54Google Scholar
  11. His, E., Robert, R. (1985). Développement des véligères de Crassostrea gigas dans le bassin d'Arcachon. Etudes sur les mortalités larvaires. Revue Trav. Inst. (scient. tech.) Pêch. marit. 47: 63–88Google Scholar
  12. His, E., Robert, R. (1987). L'isolement des véligères de Crassostrea gigas du milieu naturel: un nouveau mode d'investigation sur la biologie larvaire. Haliotis, Paris 16: 573–575Google Scholar
  13. Hoagland, K. (1986). Effects of temperature, salinity and substratum on larvae of the shipworms (Teredo bartschi Clapp and T. navalis Linnaeus, Bivalvia: Teredinidae). Am. malac. Bull. 4: 89–99Google Scholar
  14. Hrs-Brenko, M. (1978). The relationship of temperature and salinity to larval development in mussels (Mytilus galloprovincialis Lamarck). Proc. 12th Eur. mar. Biol. Symp. 359–365. [McLusky, D. S., Berry, A. J. (eds.). Pergamon Press, Oxford]Google Scholar
  15. Hrs-Brenko, M. (1981). The growth and survival of larvae of several bivalve species at high temperature and the practicability of their culture in heated effluent waters. Ichthyologia (Yugoslavia) 13: 29–37Google Scholar
  16. Hrs-Brenko, M., Calabrese, A. (1969). The combined effects of salinity and temperature on embryos and larvae of the mussel Mytilus edulis. Mar. Biol. 4: 224–226Google Scholar
  17. Iversen, E. S. (1968). Farming the edge of the sea. Fishing News Ltd., LondonGoogle Scholar
  18. Kalyanasundaram, M., Ramamoorthi, M. (1986). Temperature and salinity requirements for embryonic development of Saccostrea cucullata (Born). Mahasagar 19: 52–55Google Scholar
  19. Loosanoff, V. L., Davis, H. C. (1963). Rearing of bivalve mollusks. Adv. mar. Biol. 1: 1–136Google Scholar
  20. Lough, R. G. (1975). A reevaluation of the combined effects of temperature and salinity on survival and growth of bivalve larvae using response-surface techniques. Fish. Bull. U.S. 73: 86–94Google Scholar
  21. Lucas, A., Chebab-Chalabi, L., Aldana-Aranda, D. (1986). Passage de l'endotrophie à l'exotrophie chez les larves de Mytilus edulis. Oceanol. Acta 9: 97–103Google Scholar
  22. Masson, M. (1977). Observations sur la nutrition des larves de Mytilus galloprovincialis avec des aliments inertes. Mar. Biol. 40: 157–164Google Scholar
  23. Millard, R. H., Scott, J. M. (1967). The larvae of the oyster Ostrea edulis during starvation. J. mar. biol. Ass. U.K. 47: 475–484Google Scholar
  24. Neudecker, T. (1985). Inhibitory effect of low salinity on metamorphosis of Crassostrea gigas Thunberg larvae. Int. Counc. Explor. Sea Comm. Meet. (Maricult. Comm) F:48: 1–9Google Scholar
  25. Newkirk, G. F., Waugh, D. L., Haley, L. E. (1977). Genetics of larval tolerance to reduced salinities in two populations of oysters, Crassostrea virginica. J. Fish. Res. Bd Can. 34: 384–387Google Scholar
  26. Robert, R., Guillocheau, N., Collos Y. (1987). Hydrological parameters during an annual cycle in the Arcachon Basin. Mar. Biol. 95: 631–640Google Scholar
  27. Robert, R., His, E. (1987). Etudes sur la nutrition des véligères du milieu naturel: application de la microscopie à épifluorescence aux larves de Crassostrea gigas du bassin d'Arcachon au cours de l'été 1985. Haliotis 16: p. 581Google Scholar
  28. Robert, R., His, E., Dinet, A. (1988). Combined effects of temperature and salinity on fed and starved of the European flat oyster Ostrea edulis. Mar. Biol. 97: 95–100Google Scholar
  29. Stickney, A. P. (1964). Salinity, temperature and food requirements of soft shell clam larvae in laboratory culture. Ecology 45: 283–291Google Scholar
  30. Yonge, C. M. (1960). Oysters. Collins, LondonGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • E. His
    • 1
  • R. Robert
    • 1
  • A. Dinet
    • 2
  1. 1.Quai du Commandant SilhouetteInstitut Français de Recherche pour l'Exploitation de la MerArcachonFrance
  2. 2.Centre de Recherche en Ecologie Marine et Aquaculture de l'HoumeauNieul sur merFrance

Personalised recommendations