Advertisement

Archive for History of Exact Sciences

, Volume 47, Issue 2, pp 103–141 | Cite as

The Origins of Euler's Variational Calculus

  • Craig G. Fraser
Article

Keywords

Variational Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbeau, E. J., & Leah, P. J., 1976. “Euler's 1760 paper on divergent series”, Historia Mathematica 3, pp. 141–160.Google Scholar
  2. Bernoulli, Jakob. 1697. “Solutio problematum fraternorum, peculiari programmate cal. Jan. 1697 Groningae, nec non Actorum Lips. mense Jun. & Dec. 1696, & Febr. 1697 propositorum: una cum propositione reciproca aliorum”, in Acta eruditorum, pp. 211–217. Published in Jakob's Opera (1744), pp. 768–778. Reproduced in [Bernoulli, Jakob and Johann, 1991], pp. 271–282.Google Scholar
  3. Bernoulli, Jakob. 1701. “Analysis magni problematis isoperimetrici”, Acta eruditorum, pp. 213–228. Published in Jakob's Opera (1744),pp. 895–920, and in Johann's Opera V. 2 (1742), pp. 219–234. Reproduced in [Bernoulli, Jakob and Johann, 1991].Google Scholar
  4. Bernoulli, Jakob. 1744. Jacobi Bernoulli Basileensis opera, 2 volumes. Ed. Gabriel Cramer. Geneva.Google Scholar
  5. Bernoulli, Johann. 1719. “Remarques sur ce qu'on a donné jusqu'ici de solutions des Problêmes sur les Isoperimetres, avec une nouvelle methode courte & facile de les resoudre sans calcul, laquelle s'étend aussi à d'autres problêmes qui ont rapport à ceux-là”, Mémoires de l'Académie Royale des Sciences 1718, pp. 100–138. Reproduced in [Bernoulli, Jakob and Johann, 1991], pp. 527–568.Google Scholar
  6. Bernoulli, Jakob. 1742. Johannis Bernoulli opera omnia. 4 volumes. Ed. Gabriel Cramer. Lausanne and Geneva.Google Scholar
  7. Bernoulli, Jakob & Bernoulli, Johann. 1991. Die Streitschriften von Jacob und Johann Bernoulli Variationsrechnung. Edited by H. H. Goldstine with the assistance of P. Radelet-de Grave. Introduction by Goldstine, pp. 4–113. Published by the Naturforschenden Gesellschaft in Basel. Birkhäuser Verlag. Basel, Boston and Berlin. This volume contains numerous selections from the Meditationes, Jakob's scientific notebook. An early draft version of his 1701 paper will be found in Med. CCXXXIX, pp. 228–247. This selection is also reproduced by [Dietz 1959, 100–115].Google Scholar
  8. Bos, H. J. M. 1974. “Differentials, higher-order differentials and the derivative in the Leibnizian calculus”, Archive for History of Exact Sciences 14, pp. 1–90.Google Scholar
  9. Carathéodory, C. 1952. “Einführung in Eulers Arbeiten über Variationsrechnung”, in Euler's Opera Omnia, Ser. 1, V. 24, pp. viii-li.Google Scholar
  10. Demidov, S. S. 1982. “The study of partial differential equations of the first order in the 18th and 19th centuries”, Archive for History of Exact Sciences 26, pp. 325–350.Google Scholar
  11. Dietz, P.. 1959. “Die Ursprünge der Variationsrechnung bei Jakob Bernoulli”, Verhandlungen der Naturforschenden Gesellschaft in Basel V. 70 N. 2, pp. 81–146. Contains several selections from Jakob's Meditationes.Google Scholar
  12. Euler, L. 1726. “Constructio linearum isochronarum in medio resistente”, Acta eruditorum, pp. 361–363. In the Opera omnia Ser. 2 V. 6 (1957), pp. 1–3.Google Scholar
  13. Euler, L. 1736. Mechanica sive motus scientia analytice exposita. Two volumes. Published in 1952 (ed. P. Stäckel) as volumes 1 and 2 of series 2 of Euler's Opera omnia.Google Scholar
  14. Euler, L. 1738. “Problematis isoperimetrici in latissimo sensu accepti solutio generalis”, in Commentarii academiae scientiarum Petropolitanae 6, (1732/3), pp. 123–155. Reprinted in Euler's Opera omnia Ser. 1, V. 25 (1952),pp. 13–40.Google Scholar
  15. Euler, L. 1740. “De linea celerrimi descensus in medio quocunque resistente”, Commentant academiae scientiarum Petropolitanae 7 (1734/35), pp. 135–139. Reprinted in Opera omnia Ser. 1, V. 25 (1952), pp. 41–53.Google Scholar
  16. Euler, L. 1741. “Curvarum maximi minimive proprietate gaudentium inventio nova et facilis”, in Commentant academiae scientiarum Petropolitanae 8 (1736), 159–190. Reprinted in Opera omnia Ser. 1, V. 25 (1952), pp. 54–80.Google Scholar
  17. Euler, L. 1744. Methodus inveniendi curvas lineas maximi minimive proprietate gaudentes sive solution problematis isoperimetrici latissimo sensu accepti, Lausanne. Reprinted as Opera omnia Ser. 1, V. 24 (1952).Google Scholar
  18. Feigenbaum, L. 1985. “Brook Taylor and the method of increments”, Archive for History of Exact Sciences 34, pp. 1–140.Google Scholar
  19. Feigenbaum, L. 1992. “The fragmentation of the European mathematical community”, in The investigation of difficult things: essays on Newton and the history of the exact sciences in honour of D. T. Whiteside, pp. 383–397. Cambridge University Press.Google Scholar
  20. Fellmann, E. A., & Fleckenstein, J. O. 1970. “Bernoulli, Johann (Jean) I”, in Dictionary of scientific biography, ed. C. C. Gillispie, V. 2, pp. 51–55.Google Scholar
  21. Fraser, C. 1985. “J. L. Lagrange's changing approach to the foundations of the calculus of variations”, Archive for History of Exact Sciences 32, pp. 151–191.Google Scholar
  22. Fraser, C. 1991. Review of Bernoulli, Jakob and Johann, 1991, in Centaurus 34, pp. 367–369.Google Scholar
  23. Fraser, C. 1992. “Isoperimetric problems in the variational calculus of Euler and Lagrange”, Historia Mathematica 19, pp. 4–23.Google Scholar
  24. Goldstine, H. H. 1980. A history of the calculus of variations from the 17 th through the 19 th century. Springer-Verlag.Google Scholar
  25. Goldstine, H. H. 1991. Introduction to [Bernoulli, Jakob and Johann, 1991], pp. 1–113.Google Scholar
  26. Hermann, J. 1729. “Theoria generalis motuum qui nascuntur a potentiis quibusvis in corpora indesinenter agentibus, sive haec corpora in vacuo ferantur sive in medio resistenti.” Commentarii academiae scientiarum imperialis Petropolitanae 2 (1727), pp. 139–173.Google Scholar
  27. Taylor, B. 1715. Methodus incrementorum directa & inversa. London.Google Scholar
  28. Woodhouse, R. 1810. A treatise on isoperimetrical problems and the calculus of variations. Cambridge.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Craig G. Fraser
    • 1
  1. 1.Institute for the History and Philosophy of Science and Technology Victoria CollegeUniversity of TorontoCanada

Personalised recommendations