Marine Biology

, Volume 83, Issue 2, pp 141–147 | Cite as

Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia

  • A. M. Pregnall
  • R. D. Smith
  • T. A. Kursar
  • R. S. Alberte


The temperate seagrass Zostera marina L. is common in coastal marine habitats characterized by the presence of reducing sediments. The roots of this seagrass grow in these anoxic sediments, yet eelgrass is highly productive. Through photosynthesis-dependent oxygen transport from leaves to roots, aerobic respiration is supported in eelgrass roots only during daylight; consequently, roots are subjected to diurnal periods of anoxia. Under anoxic root conditions, the amino acids alanine and γ-amino butyric acid accumulate within a few hours to account for 70% of the total amino acid pool, while glutamate and glutamine decline. Little ethanol is produced, and the pool size of the organic acid malate changes little or declines slowly. Upon the resumption of shoot photosynthesis and oxygen transport to the roots, the accumulated γ-amino butyric acid declines rapidly, glutamate and glutamine pools increase, and alanine declines over a 16-h period. These adaptive metabolic responses by eelgrass to diurnal root anoxia must contribute to the successful exploitation of shallow-water marine sediments that have excluded nearly all vascular plant groups. A metabolic scheme is presented that accounts for the observed changes in organic and amino acid pool sizes in response to anoxia.


Pool Size Oxygen Transport Total Amino Acid Aerobic Respiration Amino Acid Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Backman, T. W. and D. C. Barilotti: Irradiance reduction: effects on standing crops of the eelgrass Zostera marina in a coastal lagoon. Mar. Biol. 34, 33–40 (1976)Google Scholar
  2. Bertani, A., F. Menegus and R. Bollini: Some effects of anaerobiosis on protein metabolism in rice roots. Z. Pflanzenphysiol. 103, 37–43 (1981)Google Scholar
  3. Bulthuis, D. A.: Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia. J. exp. mar. Biol. Ecol. 67, 91–103 (1983)Google Scholar
  4. Davies, D. D.: Anaerobic metabolism and the production of organic acids. In: The biochemistry of plants. Vol. 2. Metabolism and respiration, pp 581–607. Ed. by P. K. Stumpf and E. F. Conn. London: Academic Press 1980Google Scholar
  5. Dennison, W. C. and R. S. Alberte: Photosynthetic responses of Zostera marina L. (eelgrass) to in situ manipulations of light intensity. Oecologia 55, 137–144 (1982)Google Scholar
  6. Dubinina, I. M.: Metabolism of roots under various levels of aeration. Sov. Plant Physiol. 8, 314–322 (1961)Google Scholar
  7. Fenchel, T.: Aspects of the decomposition of seagrasses. In: Seagrass ecosystems: a scientific perspective, pp 123–145. Ed. by C. P. McRoy and C. Helfferich. New York: Marcel Dekker 1977Google Scholar
  8. Fulton, J. M., A. E. Erickson and N. E. Tolbert: Distribution of C14 among metabolites of flooded and aerobically grown tomato plants. Agron. J. 56, 527–529 (1964)Google Scholar
  9. Gleason, M. L. and J. C. Zieman: Influence of tidal inundation on internal oxygen supply of Spartina alterniflora and Spartina patens. Estuar. coast. Shelf Sci. 13, 47–57 (1981)Google Scholar
  10. Gray, J. C.: Absorption of polyphenols by polyvinylpyrrolidone and polystyrene resins. Phytochemistry 17, 495–497 (1978)Google Scholar
  11. Harrison, P. G.: Comparative growth of Zostera japonica Aschers. & Graebn. and Z. marina L. under simulated intertidal and subtidal conditions. Aquat. Bot. 14, 373–379 (1982)Google Scholar
  12. Iizumi, H. and A. Hattori: Growth and organic production of eelgrass (Zostera marina L.) in temperate water of the Pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12, 245–256 (1982)Google Scholar
  13. Iizumi, H., A. Hattori and C. P. McRoy: Nitrate and nitrite in interstitial waters of eelgrass beds in relation to the rhizosphere. J. exp. mar. Biol. Ecol. 47, 191–201 (1980)Google Scholar
  14. Iizumi, H., A. Hattori and C. P. McRoy: Ammonium regeneration and assimilation in eelgrass (Zostera marina) beds. Mar. Biol. 66, 59–65 (1982)Google Scholar
  15. John, C. D. and H. Greenway: Alcoholic fermentation and activity of some enzymes in rice roots under anaerobiosis. Aust. J. Plant physiol. 3, 325–336 (1976)Google Scholar
  16. Joly, C. A. and R. M. M. Crawford: Variation in tolerance and metabolic responses to flooding in some tropical trees. J. exp. Bot. 33, 799–809 (1982)Google Scholar
  17. Jones, B. N. and J. P. Gilligan: o-Phthaldialdehyde precolumn derivatization and reversed-phase high performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J. Chromatogr. 266, 471–482 (1983)Google Scholar
  18. Kieber, D. J. and K. Mopper: Reversed-phase high-performance liquid chromatographic analysis of α-keto acid quinoxalinol derivates. Optimization of technique and application to natural samples. J. Chromatogr. 281, 135–149 (1983)Google Scholar
  19. Kirchman, D. L., L. Mazzella, R. S. Alberte and R. Mitchell: Epiphyte bacterial production on Zostera marina. Mar. Ecol. Prog. Ser. 15, 117–123 (1984)Google Scholar
  20. McRoy, C. P. and R. J. Barsdate: Phosphate absorption in eelgrass. Limnol. Oceanogr. 15, 6–13 (1970)Google Scholar
  21. Mendelssohn, I. A., K. I. McKee and W. H. Patrick: Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science, N.Y. 214, 439–441 (1981)Google Scholar
  22. Miflin, B. J. and P. J. Lea: Amino acid metabolism. A. Rev. Plant Physiol. 28, 299–329 (1977)Google Scholar
  23. Möllering, H.: Malate. Determination with malate dehydrogenase and glutamate-oxaloacetate transaminase. In: Methods of enzymatic analysis, 2nd ed., Vol. 3, pp 1589–1593. Ed. by H. U. Bergmeyer. Weinheim: Verlag Chemie 1974Google Scholar
  24. Oremland, R. S. and B. F. Taylor: Diurnal fluctuations of O2, N2, and CH4 in the rhizosphere of Thalassia testudinum. Limnol. Oceanogr. 22, 566–570 (1977)Google Scholar
  25. Penhale, P. A. and R. G. Wetzel: Structural and functional adaptations of eelgrass (Zostera marina L.) to the anaerobic sediment environment. Can. J. Bot. 61, 1421–1428 (1983)Google Scholar
  26. Phillips, R. C. and C. P. McRoy (Eds.): Handbook of seagrass biology: an ecosystem perspective, 353 pp. New York: Garland Press 1980Google Scholar
  27. Rumpho, M. E. and R. A. Kennedy: Anaerobiosis in Echinochloa crusgalli (Barnyard grass) seedlings. Intermediary metabolism and ethanol tolerance. Plant Physiol. 72, 44–49 (1983)Google Scholar
  28. Saglio, P. H., P. Raymond and A. Pradet: Metabolic activity and energy charge of excised maize root tips under anoxia. Plant Physiol. 66, 1053–1057 (1980)Google Scholar
  29. Short, F. T.: The response of interstitial ammonium in eelgrass (Zostera marina L.) beds to environmental perturbations. J. exp. mar. Biol. Ecol. 68, 195–208 (1983)Google Scholar
  30. Smith, A. M. and T. ap Rees: Pathways of carbohydrate fermentation in the roots of marsh plants. Planta 146, 327–334 (1979a)Google Scholar
  31. Smith, A. M. and T. ap Rees: Effects of anaerobiosis on carbohydrate oxidation by roots of Pisum sativum. Phytochemistry 18, 1453–1458 (1979b)Google Scholar
  32. Smith, R. D., W. C. Dennison and R. S. Alberte: Role of seagrass photosynthesis in root aerobic processes. Plant Physiol. 74, 1055–1058 (1984)Google Scholar
  33. Streeter, J. G. and J. F. Thompson: Anaerobic accumulation of γ-amino butyric acid and alanine in radish leaves (Raphanus sativus L.). Plant Physiol. 49, 572–578 (1972a)Google Scholar
  34. Streeter, J. G. and J. F. Thompson: In vivo and in vitro studies on γ-aminobutyric acid metabolism with the radish plant (Raphanus sativus L.). Plant Physiol. 49, 579–584 (1972b)Google Scholar
  35. Thayer, G. W., D. W. Engel and M. W. LaCroix: Seasonal distribution and changes in the nutritive quality of living, dead and detrital fractions of Zostera marina. J. exp. mar. Biol. Ecol. 30, 109–127 (1977)Google Scholar
  36. Witt, I.: Ethanol. Determination with alcohol dehydrogenase and 3-acetylpyridine analogue of NAD (APAD). In: Methods of enzymatic analysis, 2nd ed. Vol. 3, pp 1502–1505. Ed. by H. U. Bergmeyer. Weinheim: Verlag Chemie 1974Google Scholar
  37. Woo, D. J. and J. R. Benson: Organic acid determination by liquid chromatography. Liq. Chromatogr. 1, 238–241 (1983)Google Scholar
  38. Wood, D. C. and S. S. Hayasaka: Chemotaxis of rhizoplane bacteria to amino acids comprising eelgrass (Zostera marina L.) root exudates. J. exp. mar. Biol. Ecol. 50, 153–161 (1981)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. M. Pregnall
    • 1
  • R. D. Smith
    • 1
  • T. A. Kursar
    • 1
  • R. S. Alberte
    • 1
  1. 1.Barnes LaboratoryThe University of ChicagoChicagoUSA

Personalised recommendations