, Volume 103, Issue 1, pp 55–64

CO2-Fixierung und Stofftransport in benthischen marinen Algen

I. Zur Kinetik der 14CO2-Assimilation bei Laminaria saccharina
  • Bruno P. Kremer
  • Johannes Willenbrink

CO2-fixation and translocation in benthic marine algae

I. Kinetics of 14CO2-assimilation in Laminaria saccharina


When discs punched out of the median part of the phylloid of Laminaria saccharina Lamour. were exposed to H14CO3- in the light for periods of 10 sec to 10 min, 14C was rapidly incorporated into various photosynthetic products. As compared with dark fixation, 14C-photosynthesis increased exponentially during the first 60 sec of incubation in H14CO3-. Fixation rates were found to be 76 μmol CO2·dm-2·h-1 or 100 μmol CO2·mg-1 chlorophyll a·h-1. Eighty-five per cent of the total 14C assimilated after 10 sec was fixed in phosphoglycerate and in the sugar monophosphates, 2% in the sugar diphosphates, and only 3.5% in malate and aspartate. While the radioactivity of malate and aspartate only rose to a constant level, the percentage of the total 14C in phosphoglycerate and-to a lower extent-that in the sugar monophosphates rapidly decreased with the duration of light exposure. Simultaneously, mannitol and glycine+serine became labelled with 43% and 32% respectively of the total 14C after 10 min light fixation. In the dark, the percentage of the total 14C in malate decreased with the time of H14CO2--incubation, while there was a remarkable increase in radioactivity of aspartate and glutamate. Within 60 min darkness no labelling of mannitol was found.

From the present results it is concluded that the photosynthetic carbon cycle first described by Bassham and Calvin operates in Laminaria saccharina.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bidwell, R. G. S.: Photosynthesis and metabolism of marine algae. II. A survey of rates and products of photosynthesis in C14O2. Canad. J. Bot. 36, 337–349 (1958).Google Scholar
  2. —, Craigie, J. S., Krotkov, G.: Photosynthesis and metabolism of marine algae. III. Distribution of photosynthetic carbon from C14O2 in Fucus vesiculosus. Canad. J. Bot. 36, 581–590 (1958).Google Scholar
  3. Calvin, M., Bassham, J. A., Benson, A. A., Lynch, V., Quellet, C., Schou, L., Stepka, W., Tolbert, N. E.: Carbon dioxide assimilation in plants. Symp. Soc. exp. Biol. 5, 284–305 (1951).Google Scholar
  4. Craigie, J. S.: Dark fixation of C14-bicarbonate by marine algae. Canad. J. Bot. 41, 317–325 (1963).Google Scholar
  5. Greenberg, D. M., Rothstein, M.: Methods for chemical synthesis, isolation, and degradation of labeled compounds as applied in metabolic studies of amino acids and proteins. In: Methods in enzymology, vol. IV, p. 652–731, Colowick, S. P., Kaplan, N. O., eds. New York: Academic Press 1957.Google Scholar
  6. Hatch, M. D., Slack, C. R.: Photosynthetic CO2-fixation pathways. Ann. Rev. Plant Physiol. 21, 141–162 (1970).Google Scholar
  7. Hegnauer, R.: Chemotaxonomie der Pflanzen, Bd. I, p. 62–92. Basel-Stuttgart 1962.Google Scholar
  8. Jacobi, G.: Über die Bestimmung stationärer Konzentrationen von Brenztraubensäure und α-Ketoglutarsäure in Laminarien. Kiel. Meeresforsch. 14, 247–250 (1958).Google Scholar
  9. Kylin, H.: The biochemistry of the Phaeophyceae. Fysiogr. Sällsk. Förhandl. 14, 226–338 (1944).Google Scholar
  10. Lewis, D. H., Smith, D. C.: Sugar alcohols (polyols) in fungi and green plants. II. Methods of detection and quantitative estimation in plant extracts. New Phytologist 66, 185–204 (1967).Google Scholar
  11. Linskens, H. F., ed.: Papierchromatographie in der Botanik. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  12. Provasoli, L.: Media and prospects for the cultivation of marine algae. In: Watanabe, A., Hattori, A., eds. Cultures and collections of algae. Jap. Soc. Plant Physiol. 1966, p. 63–75.Google Scholar
  13. Schmitz, K., Lüning, K., Willenbrink, J.: CO2-Fixierung und Stofftransport in benthischen marinen Algen. II. Transport 14C-markierter Assimilate in Laminaria saccharina und Laminaria hyperborea. In Vorbereitung.Google Scholar
  14. Strickland, J. D. H., Parsons, T. R.: A manual of seawater analysis. Fish. Res. Board Can. Bull. 125, 1–203 (1965).Google Scholar
  15. Tyszkiewicz, E.: An improved solvent system for the paper chromatography of phosphate esters. Analyt. Biochem. 3, 162–172 (1962).Google Scholar
  16. Yamaguchi, T., Ikawa, T., Nisizawa, K.: Incorporation of radioactive carbon from H14CO3 - into sugar constituents by a brown alga, Eisenia bicyclis, during photosynthesis and its fate in the dark. Plant Cell Physiol. 7, 217–229 (1966).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Bruno P. Kremer
    • 1
  • Johannes Willenbrink
    • 1
  1. 1.Botanisches Institut der Universität BonnBonnDeutschland

Personalised recommendations