, Volume 161, Issue 5, pp 459–464 | Cite as

Kinetics of amyloplast sedimentation in gravistimulated maize coleoptiles

  • F. D. Sack
  • M. M. Suyemoto
  • A. C. Leopold


Inner mesophyll cells from coleoptiles of Zea mays L. cv. Merit were fixed after varying periods of gravistimulation. A statistically significant amount (17–21%) of amyloplast sedimentation occurred in these cells after 30 s of gravistimulation. The presentation time is approx. 40 s or less. The accumulation of amyloplasts near the new lower wall shows a linear relationship to the logarithm of the gravistimulation time (r=0.92 or higher). The intercept of this line with the baseline value of amyloplasts in vertical coleoptiles indicates that the number of amyloplasts on the new lower wall begins increasing 11–15 s after the onset of gravistimulation. Direct observations of living cells confirm that many amyloplasts sediment within less than 15–30 s. These rapid kinetics are consistent with the classical statolith hypothesis of graviperception involving the sedimentation of amyloplasts to the vicinity of the new lower wall.

Key words

Amyloplast sedimentation Coleoptile (gravistimulation) Graviperception Zea (graviperception) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Audus, L.J. (1979) Plant geosensors. J. Exp. Bot. 30, 1051–1074Google Scholar
  2. Clifford, P.E. (1979 a) Amyloplast movement and the geotropic response. Z. Pflanzenphysiol. 91, 69–74Google Scholar
  3. Clifford, P.E. (1979 b) Significance of spontaneous bending during clinostat rotation. Z. Pflanzenphysiol. 95, 465–469Google Scholar
  4. Clifford, P.E., Barclay, G.F. (1980) The sedimentation of amyloplasts in living statocytes of the dandelion flower stalk. Plant Cell Environ. 3, 381–386Google Scholar
  5. Dolk, H.E. (1936) Geotropism and the growth substance. Rec. Trav. Bot. Néerl. 33, 509–585Google Scholar
  6. Griffiths, H.J. (1963) Physiological and cytological studies of the statolith apparatus in plants. Ph.D. thesis, University of London, UKGoogle Scholar
  7. Haberlandt, G. (1914) Physiological plant anatomy, 4th edn., transl. by M. Drummond MacMillan, LondonGoogle Scholar
  8. Hawker, L.E. (1932) A quantitative study of the geotropism of seedlings with special reference to the nature and development of their statolith apparatus. Ann. Bot. (London) 46, 121–157Google Scholar
  9. Heathcote, D.G. (1981) The geotropic reaction and statolith movements following geostimulation of mung bean hypocotyls. Plant Cell Environ. 4, 131–140Google Scholar
  10. Hertel, R., DelaFuente, R.K., Leopold, A.C. (1969) Geotropism and the lateral transport of auxin in the corn mutant amylomaize. Planta 88, 204–214Google Scholar
  11. Hestnes, A., Iversen, T.-H. (1978) Movement of cell organelles and the geotropic curvature in roots of Norway spruce (Picea abies). Physiol. Plant. 42, 406–414Google Scholar
  12. Iversen, T.-H., Pedersen, K., Larsen, P. (1968) Movement of amyloplasts in the root cap cells of geotropically sensitive roots. Physiol. Plant. 21, 811–819Google Scholar
  13. Johnsson, A., Pickard, B.G. (1979) The threshold stimulus for geotropism. Physiol. Plant. 45, 315–319Google Scholar
  14. Johnsson, A., Rengman, K., Grahm, L. (1971) Investigations of the geotropic curvature of the Avena coleoptile. II. The presentation time as a function of distance from apex. Physiol. Plant. 25, 43–47Google Scholar
  15. Larsen, P. (1957) The development of geotropic and spontaneous curvatures in roots. Physiol. Plant. 10, 127–163Google Scholar
  16. Larsen, P. (1965) Geotropic responses in roots as influenced by their orientation before and after stimulation. Physiol. Plant. 18, 747–765Google Scholar
  17. Olsen, G.M., Iversen, T.-H. (1980) Ultrastructure and movements of cell structures in normal pea Pisum sativum cv. sabel and an ageotropic mutant. Physiol. Plant. 50, 275–284Google Scholar
  18. Parker, M.L. (1979) Morphology and ultrastructure of the gravity sensitive leaf sheath base of the grass Echinochloa colonum. Planta 145, 471–477Google Scholar
  19. Perbal, G. (1971) Action de la pesanteur sur la répartition des organites dans les cellules axiales centrales (statenchyme) de la coiffe du Lens culinaris L. C.R. Acad. Sci. Paris Ser. D 273, 789–792Google Scholar
  20. Perbal, G. (1978) Mechanism of geoperception in lentil roots. J. Exp. Bot. 29, 631–638Google Scholar
  21. Shen-Miller, J., Miller, C. (1972) Distribution and activation of the golgi apparatus in geotropism. Plant Physiol. 49, 634–639Google Scholar
  22. Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43PubMedGoogle Scholar
  23. Volkmann, D., Sievers, A. (1979) Graviperception in multicellular organs. Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 573–600, Haupt, W., Feinleib, M., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • F. D. Sack
    • 1
  • M. M. Suyemoto
    • 1
  • A. C. Leopold
    • 1
  1. 1.Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaUSA

Personalised recommendations