Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of glycine on dark-and ligh-induced pulvinar movements and modifications of proton fluxes in the pulvinus of Mimosa pudica during glycine uptake

  • 47 Accesses

  • 27 Citations

Abstract

Glycine (1–50 mM) increases the rate of the dark-induced (scotonastic) movements and decreases the amplitude and the rate of the light-induced (photonastic) movements of the secondary pulvini of Mimosa pudica leaves. The uptake of glycine is accompanied by a long-lasting dose-dependent increase in the alkalinity of the bathing medium of the excised pulvini. The data are in agreement with a H+-glycine co-transport mechanism within the pulvinar cells. Fusicoccin (50 μM), known to promote H+−K+ exchange, antagonizes the effects of glycine on the movements and the alkalization of the bathing medium of the excised pulvini. The present results argue for the hypothesis that proton fluxes mediate the scotonastic and photonastic pulvinar movements.

This is a preview of subscription content, log in to check access.

Abbreviations

Gly:

glycine

FC:

fusicoccin

P1 :

primary pulvinus

P2 :

secondary pulvinus

References

  1. Baker, D.A. (1978) Proton co-transport of organic solutes by plant cells. New Phytol. 81, 485–497

  2. Baker, D.A., Malek, F., Dehvar, F.D. (1980) Phloem loading of amino acids from the petioles of Ricinus leaves. Ber. Dtsch. Bot. Ges. 93, 203–209

  3. Bonnemain, J.L., Roblin, G., Gaillochet, J., Fleurat-Lessard, P. (1978) Effets de l'acide abscissique et de la fusicoccine sur les réactions motrices des pulvinus du Cassia fasciculata Michx et du Mimosa pudica L. C. R. Acad. Sci. Paris Ser. D 286, 1681–1686

  4. Cheung, Y.-N.S., Nobel, P.S. (1973) Amino acid uptake by pea leaf fragments. Specificity, energy sources, and mechanism. Plant Physiol. 52, 633–637

  5. Dejaegere, R., Neirinckx, L. (1978) Proton extrusion and ion uptake: some characteristics of the phenomenon in barley seedlings. Z. Pflanzenphysiol. 89, 129–140

  6. Despeghel, J.P., Delrot, S. (1983) Energetics of amino acid uptake by Vicia faba leaf tissues. Plant Physiol. 71, 1–6

  7. Etherton, B., Rubinstein, B. (1978) Evidence for amino acid-H+ co-transport in oat coleoptiles. Plant Physiol. 61, 933–937

  8. Fischer, E., Lüttge, U. (1980) Membrane potential changes related to active transport of glycine in Lemna gibba G1. Plant Physiol. 65, 1004–1008

  9. Fitting, H. (1930) Untersuchungen über endogene Chemonastie bei Mimosa pudica. Jahrb. Wiss. Bot. 72, 700–775

  10. Galston, A.W. (1978) Leaf movements and the analysis of plant behavior. Bot. Mag., Spec. Issue 1, 243–253

  11. Iglesias, A., Satter, R.L. (1983) H+ fluxes in excised Samanea motor tissue. I. Promotion by light. Plant Physiol. 72, 564–569

  12. Jung, K.D., Lüttge, U. (1980) Amino acid uptake by Lemna gibba by a mechanism with affinity to neutral l-and d-amino acids. Planta 150, 230–235

  13. Lado, P., De Michelis, M.I., Cerana, R., Marrè, E. (1976) Fusicoccin-induced K+-stimulated proton secretion and acid-induced growth of apical root segments. Plant Sci. Lett. 6, 5–20

  14. Lien, R., Rognes, S.E. (1977) Uptake of amino acids by barley leaf slices: kinetics, specificity, and energetics. Physiol. Plant. 41, 175–183

  15. Marrè, E. (1979) Fusicoccin: a tool in plant physiology. Annu. Rev. Plant Physiol. 30, 273–288

  16. Marrè, E., Lado, P., Rasi-Caldogno, F., Colombo, R., De Michelis, M.I. (1974) Evidence for the coupling of proton extrusion to K+ uptake in pea internode segments treated with fusicoccin or auxin. Plant Sci. Lett. 3, 365–379

  17. Naylor, A.W., Tolbert, N.E. (1956) Glutamic acid metabolism in green and etiolated barley leaves. Physiol. Plant. 9, 220–229

  18. Racusen, R.H., Galston, A.W. (1977) Electrical evidence for rhythmic changes in the cotransport of sucrose and hydrogen ions in Samanea pulvini. Planta 135, 57–62

  19. Raschke, K., Humble, G.D. (1973) No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions. Planta 115, 47–57

  20. Roblin, G. (1980) Fusicoccin-induced H+ excretion in the sensitive plant pulvini (Abstr.). Plant Physiol. 65, Suppl. 912

  21. Roblin, G. (1982) Movements, bioelectrical events and proton excretion induced in the pulvini of Mimosa pudica by a period of darkness. Z. Pflanzenphysiol. 108, 295–304

  22. Roblin, G., Fleurat-Lessard, P. (1983) Distribution of potassium, chloride and calcium and capacity of hydrogen ion excretion in various parts of the Mimosa pudica plant. Ann. Bot. (London) 52, 763–768

  23. Satter, R.L., Galston, A.W. (1981) Mechanisms of control of leaf movements. Annu. Rev. Plant Physiol. 32, 83–110

  24. Schildknecht, H., Tauscher, B., Pesh-Imam, M., Beltle, W., Kunzelmann, P., Schneider, D. (1978) Aminosäuren als “leaf movement factors”. Naturwissenschaften 65, 125–129

  25. Shtarkshall, R.A., Reinhold, L., Harel, H. (1970) Transport of amino acids in barley leaf tissues. Evidence for a specific uptake mechanism and the influence of “ageing” on accumulatory capacity. J. Exp. Bot. 21, 915–925

  26. Stewart, C.R. (1973) The effect of wilting on proline metabolism in excised bean leaves in the dark. Plant Physiol. 51, 508–511

  27. Streeter, J.G., Thompson, J.F. (1972) Anaerobic accumulation of γ-amino-butyric acid and alanine in radish leaves (Raphanus sativus L.). Plant Physiol. 49, 572–578

  28. Van Bel, A.J.E., Van Erven, A.J. (1976) Stimulation of proton influx by amino acid uptake in tomato internode disks. Z. Pflanzenphysiol. 80, 74–76

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Otsiogo-Oyabi, H., Roblin, G. Effects of glycine on dark-and ligh-induced pulvinar movements and modifications of proton fluxes in the pulvinus of Mimosa pudica during glycine uptake. Planta 161, 404–408 (1984). https://doi.org/10.1007/BF00394570

Download citation

Key words

  • Glycine cotransport
  • Fusicoccin
  • Mimosa
  • Proton flux
  • Pulvinus movement