Advertisement

Antonie van Leeuwenhoek

, Volume 40, Issue 2, pp 217–220 | Cite as

DNA base composition of some sheathed bacteria

  • W. H. J. Crombach
  • W. L. van Veen
  • A. W. Van Der Vlies
  • W. C. P. M. Bots
Article

Abstract

The DNA base composition of five recently isolated Haliscomenobacter hydrossis strains were compared with those of Sphaerotilus natans, Leptothrix cholodnii and Leptothrix discophora. The DNA base composition of H. hydrossis strains ranged from 48.3 to 49.7% GC, whereas the % GC values of S. natans, L. cholodnii and L. discophora were found to be 69.7, 69.6 and 71.2, respectively. These results indicate that Haliscomenobacter species and the microorganisms of the Sphaerotilus-Leptothrix group should not be classified into the same genus, as they are genetically at best remotely related.

The reallocation of some Leptothrix species into the genus Sphaerotilus is not in contradiction with their DNA base composition.

Keywords

Base Composition Leptothrix Discophora Haliscomenobacter Hydrossis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crombach, W. H. J. 1972. DNA base composition of soil arthrobacters and other coryneforms from cheese and sea fish. — Antonie van Leeuwenhoek 38: 105–120.Google Scholar
  2. Crombach, W. H. J. 1973. Deep freezing of bacterial DNA for thermal denaturation and hybridization experiments. — Antonie van Leeuwenhoek 39: 249–255.Google Scholar
  3. Crombach, W. H. J. 1974. Thermal stability of homologous and heterologous bacterial DNA duplexes. — Antonie van Leeuwenhoek 40: 133–144.Google Scholar
  4. De Ley, J. 1969. Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA. — J. Theoret. Biol. 22: 89–116.Google Scholar
  5. De Ley, J., Cattoir, H. and Reynaerts, A. 1970. The quantitative measurement of DNA hybridization from renaturation rates. — Eur. J. Biochem. 12: 133–142.Google Scholar
  6. Mandel, M., Johnson, A. and Stokes, J. L. 1966. Deoxyribonucleic acid base composition of Sphaerotilus natans and Sphaerotilus discophorus. — J. Bacteriol. 91: 1657–1658.Google Scholar
  7. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. — J. Mol. Biol. 3: 208–218.Google Scholar
  8. Mulder, E. G. and van Veen, W. L. 1963. Investigations on the Sphaerotilus-Leptothrix group. — Antonie van Leeuwenhoek 29: 121–153.Google Scholar
  9. Pringsheim, E. G. 1949. The filamentous bacteria Sphaerotilus, Leptothrix, Cladothrix, and their relation to iron and manganese. — Trans. Roy. Soc. (London) Ser. B. 233: 453–482.Google Scholar
  10. Rouf, M. A. and Stokes, J. L. 1964. Morphology, nutrition and physiology of Sphaerotilus discophorus. — Arch. Mikrobiol. 49: 132–149.Google Scholar
  11. van Veen, W. L., van der Kooij, D., Geuze, E. C. W. A. and van der Vlies, A. W. 1971. The classification of a multicellular bacterium isolated from activated sludge. — J. Gen. Microbiol. 69: X-XI.Google Scholar
  12. van Veen, W. L., van der Kooij, D., Geuze, E. C. W. A. and van der Vlies, A. W. 1973. Investigations on the sheathed bacterium Haliscomenobacter hydrossis gen. n., sp. n., isolated from activated sludge. — Antonie van Leeuwenhoek 39: 207–216.Google Scholar
  13. Yamada, K. and Komagata, K. 1970. Taxonomic studies on coryneform bacteria. — J. Gen. Appl. Microbiol. 16: 215–224.Google Scholar

Copyright information

© H. Veenman & Zonen B.V. 1974

Authors and Affiliations

  • W. H. J. Crombach
    • 1
  • W. L. van Veen
    • 1
  • A. W. Van Der Vlies
    • 1
  • W. C. P. M. Bots
    • 1
  1. 1.Laboratory of MicrobiologyAgricultural UniversityWageningenthe Netherlands

Personalised recommendations