Advertisement

Antonie van Leeuwenhoek

, Volume 42, Issue 3, pp 181–201 | Cite as

The physiology of hydrogen bacteria

  • H. G. Schlegel
Physiology and Growth The Fifth A. J. Kluyver Memorial Lecture Delivered Before the Netherlands Society for Microbiology on October 9th, 1975, at the Delft University of Technology, Delft

Keywords

Hydrogen Hydrogen Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelal, A. T. H. and Schlegel, H. G., 1974a. Purification and regulatory properties of phosphoribulokinase from Hydrogenomonas eutropha H 16 — Biochem. J. 139: 481–489.Google Scholar
  2. Abdelal, A. T. H. and Schlegel, H. G. 1974b. Separation of phosphoribulokinase from enzymes of the calvin cycle in Hydrogenomonas eutropha H 16. — Arch. Microbiol. 95: 139–143.Google Scholar
  3. Adams, J. N. and Bradley, S. G. 1963. Recombination events in the bacterial genus Nocardia. — Science 40: 1392–1394.Google Scholar
  4. Aggag, M. and Schlegel, H. G. 1972. Studies on a Gram-positive hydrogen bacterium, Nocardia opaca strain 1b. I. Description and physiological characterization. — Arch. Mikrobiol. 88: 299–318.Google Scholar
  5. Aggag, M. and Schlegel, H. G. 1974. Studies on a Gram-positive hydrogen bacterium, Nocardia opaca 1b. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase. — Arch. Microbiol. 100: 25–39.Google Scholar
  6. Andreesen, M. and Schlegel, H. G. 1974. A new coryneform hydrogen bacterium: Corynebacterium autotrophicum strain 7C. II. Isolation of a slime-free mutant. — Arch. Microbiol. 100: 351–361.Google Scholar
  7. Atkinson, D. E. and McFadden, B. A., 1954. The biochemistry of Hydrogenomonas. I. The hydrogenase of Hydrogenomonas facilis in cell-free preparations. — J. Biol. Chem. 210: 885–893.Google Scholar
  8. Auling, G. 1975. Intakte und defekte Phagen von Wasserstoffbakterien. — Ph. D. Thesis, Göttingen.Google Scholar
  9. Baas-Becking, L. G. M. and Parks, G. S. 1927. Energy relations in the metabolism of autotrophic bacteria. — Physiol. Rev. 7: 85–100.Google Scholar
  10. Baumgarten, J., Reh, M. and Schlegel, H. G. 1974. Taxonomic studies on some Grampositive coryneform hydrogen bacteria. — Arch Microbiol. 100: 207–217.Google Scholar
  11. Beijerinck, M. W. und Minkman, D. C. J. 1910. Bildung und Verbrauch von Stickoxydul durch Bakterien. — Zentbl. Bakteriol. Parasitkde, Abt. II. 25: 30–63.Google Scholar
  12. Bowien, B. und Schlegel, H. G. 1972a. Isolierung und Charakterisierung katabolischer Defektmutanten von Hydrogenomonas eutropha Stamm H 16. I. Fructose-negative Mutanten. — Arch. Mikrobiol. 87: 203–219.Google Scholar
  13. Bowien, B. und Schlegel, H. G. 1972b. Isolierung und Charakterisierung katabolischer Defektmutanten von Hydrogenomonas eutropha Stamn H 16. II. Mutanten mit einem Defekt in der 2-Keto-3-desoxy-6-phosphogluconat-Aldolase. — Arch. Mikrobiol. 87: 221–234.Google Scholar
  14. Bradley, S. G. and Bond, J. S. 1974. Taxonomic criteria for mycobacteria and nocardiae. —Adv. Appl. Microbiol. 18: 131–190.Google Scholar
  15. Canevascini, G. and Eberhardt, U. 1975. Chemolithotrophic growth and regulation of hydrogenase formation in the coryneform hydrogen bacterium strain 11/x. — Arch. Microbiol. 103: 283–291.Google Scholar
  16. Codd, G. A., Bowien, B. and Schlegel, H. G. 1975. Glycollate formation and ribulose 1,5-diphosphate carboxylase/oxygenase in a facultative chemolithoautotrophic bacterium. — Proc. Soc. Gen. Microbiol. 3: 8.Google Scholar
  17. Davis, D. H., Stanier, R. Y., Doudoroff, M. and Mandel, M. 1970. Taxonomic studies on some Gram-negative polarly flagellated ‘hydrogen bacteria’ and related species. —Arch. Microbiol. 70: 1–13.Google Scholar
  18. Dixon, R. A., Cannon, F. C. and Kondorosi, A. 1975. Derivation of a P-type R factor carrying the nitrogen fixation genes from Klebsiella pneumoniae: nif expression in unrelated bacteria. — Proc. Soc. Gen. Microbiol. 2: 43.Google Scholar
  19. Dixon, R. A. and Postgate, J. R. 1972. Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli. — Nature 237: 102–103.Google Scholar
  20. Dworkin, H. and Foster, J. W. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. — J. Bacteriol. 75: 592–603.Google Scholar
  21. Eberhardt, U. 1966a. Über das Wasserstoff aktivierende System von Hydrogenomonas H 16. I. Verteilung der Hydrogenase-Aktivität auf zwei Zellfraktionen. — Arch. Mikrobiol. 53: 288–302.Google Scholar
  22. Eberhardt, U. 1966b. Über das Wasserstoff aktivierende System von Hydrogenomonas H. 16. II. Abnahme der Aktivität bei heterotrophem Wachstum. — Arch. Mikrobiol. 54: 115–124.Google Scholar
  23. Friedrich, C. G. and Schlegel, H. G. 1975a. Aromatic amino acid biosynthesis in Alcaligenes eutrophus H 16. I. Properties and regulation of 3-deoxy-D-arabino heptulosonate 7-phosphate synthase. — Arch. Microbiol. 103: 133–140.Google Scholar
  24. Friedrich, B. and Schlegel, H. G. 1975b. Aromatic amino acid biosynthesis in Alcaligenes eutrophus H 16. II. The isolation and characterization of mutants auxotrophic for phenylalanine and tyrosine. — Arch. Microbiol. 103: 141–149.Google Scholar
  25. Frings, W. und Schlegel, H. G. 1971. Zur Synthese von C4-Dicarbonsäuren aus Pyruvat durch Hydrogenomonas eutropha Stamm H 16. — Arch. Mikrobiol. 79: 204–219.Google Scholar
  26. Gogotov, J. N. and Schlegel, H. G. 1974. N2-fixation by chemoautotrophic hydrogen bacteria. — Arch. Microbiol. 97: 359–362.Google Scholar
  27. Goodfellow, M. J. 1971. Numerical taxonomy of some nocardioform bacteria. — J. Gen. Microbiol. 69: 33–80.Google Scholar
  28. Grohmann, G. 1924. Zur Kenntnis wasserstoffoxydierender Bakterien. — Zentbl. Bakteriol. ParasitKde. II. 61: 256–271.Google Scholar
  29. Hill, F. und Schlegel, H. G. 1969a. Die α-Isopropylmalat-Synthetase bei Hydrogenomonas H 16. — Arch. Mikrobiol. 68: 1–17.Google Scholar
  30. Hill, F. und Schlegel, H. G. 1969b. Regulationsdefekte bei trifluorleucinresistenten Mutanten von Hydrogenomonas H 16. — Arch. Microbiol. 68: 18–31.Google Scholar
  31. Hirsch, P. 1961. Wasserstoffaktivierung und Chemoautotrophie bei Actinomyceten. —Arch. Mikrobiol 39: 360–373.Google Scholar
  32. KAmp, A. F., La Rivière, J. W. M. and Verhoeven, W. (eds.) 1959. Albert Jan Kluyver, his life and work. — North-Holland Publ. Co. Amsterdam.Google Scholar
  33. Kaserer, H. 1905. Über die Oxydation des Wasserstoffes und des Methans durch Mikroben. — Z. Landwirt. Versuchs. Deut. Oesterr. 8: 789–794.Google Scholar
  34. Kaserer, H. 1906. Die oxydation des Wasserstoffs durch Mikroorganismen. — Zentbl. Bakteriol. ParasitKde. Abt. II. 16: 681–696.Google Scholar
  35. Kluyver, A. J. and Donker, H. J. L. 1924. The unity in the chemistry of the fermentative sugar dissimilation processes of microbes. — Proc. Koninkl. Akad. Wetenschap. 28: 297–313.Google Scholar
  36. Kluyver, A. J. and Donker, H. J. L. 1925. The catalytic transference of hydrogen as the basis of the chemistry of dissimilation processes. — Proc. Koninkl. Akad. Wetenschap. Amsterdam. 28: 605–618.Google Scholar
  37. Kluyver, A. J. und Donker, H. J. L. 1926. Die Einheit in der Biochemie. — Chem. Zelle Gewebe. 13: 134–190.Google Scholar
  38. Kluyver, A. J. and Manten, A. 1942. Some observations on the metabolism of bacteria oxidizing molecular hydrogen. — Antonie van Leeuwenhoek 8: 71–85.Google Scholar
  39. Kluyver, A. J. and Van Niel, C. B. 1956. The microbe's contribution to biology. — Cambridge, Harvard University Press.Google Scholar
  40. Kluyver, A. J. and Verhoeven, W. 1954. Studies on the dissimilatory nitrate reduction. IV. On adaptation in Micrococcus denitrificans. — Antonie van Leeuwenhoek 20: 337.Google Scholar
  41. Kōmura, I., Komagata, K. and Mitsugi, K. 1973. A comparison of Corynebacterium hydrocarboclastus and Nocardia erythropolis. — J. Gen. Appl. Microbiol. 19: 161–170.Google Scholar
  42. Lebedeff, A. F. 1909. Über die Assimilation des Kohlenstoffs bei wasserstoffoxydierenden Bakterien. — Ber. Deut. Bot. Ges. 27: 598–602.Google Scholar
  43. Lukins, H. B. and Foster, J. W. 1963. Utilization of hydrocarbons and hydrogen by mycobacteria. — Z. Allg. Microbiol. 3: 251–264.Google Scholar
  44. McFadden, B. A. 1973. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. — Bacteriol. Rev. 37: 289–319.Google Scholar
  45. Netter, H. 1951. Biologische Physikochemie. — Akad. Verlagsnst., Athenaion, Potsdam.Google Scholar
  46. Niklewski, B. 1910. Über die H2-Oxydation durch Mikroorganismen. — Jb. Wiss. Bot. 48: 113–142.Google Scholar
  47. Probst, I. and Schlegel, H. G. 1973. Studies on a Gram-positive hydrogen bacterium, Nocardia opaca Strain 1b. II. Enzyme formation and regulation under the influence of hydrogen or fructose as growth substrates. — Arch. Mikrobiol. 88: 319–330.Google Scholar
  48. Probst, I. and Schlegel, H. G. 1976. Respiratory components and oxidase activities in Alcaligenes eutrophus. — Biochim. Biophys. Acta in press.Google Scholar
  49. Racker, E. 1972. Bioenergetics and the Problem of tumor growth. — Amer. Sci. 60: 52–63.Google Scholar
  50. Reh, M. und Schlegel, H. G. 1969a. Anreicherung und Isolierung auxotropher Mutanten von Hydrogenomonas H 16. — Arch. Mikrobiol. 67: 99–109.Google Scholar
  51. Reh, M. and Schlegel, H. G. 1969b. Die Biosynthese von Isoleucin und Valin in Hydrogenomonas H 16. — Arch. Mikrobiol. 67: 110–127.Google Scholar
  52. Reh, M. und Schlegel, H. G. 1975. Chemolithoautotrophie als eine übertragbare, autonome Eigenschaft von Nocardia opaca 1b. — Nachr. Akad. Wiss. Göttingen. II. Math.-Phys. Kl. 12: 207–216.Google Scholar
  53. Ruhland, W. 1922. Aktivierung von Wasserstoff und CO2-Assimilation durch Bakterien. —Ber. Deut. Bot. Ges. 40: 180–184.Google Scholar
  54. Ruhland, W. 1924. Beiträge zur Physiologie der Knallgasbakterien. — Jb. wiss. Bot. 63: 321–389.Google Scholar
  55. Schlegel, H. G. 1975. Mechanisms of chemo-autotrophy, p. 9–60. In O. Kinne, (ed.), Marine Ecology, Vol. II, Part I. — J. Wiley and Sons, London.Google Scholar
  56. Schlegel, H. G., Schuster, E., Reh, M. und Metz, H. 1965. Die Abtötung wachsender Hydrogenomonas-Zellen durch Colistin. — Zentbl. Bakteriol. ParasitKde Abt. II. 119: 225–231.Google Scholar
  57. Schneider, K. 1975. Reinigung und Charakterisierung der löslichen Hydrogenase von Alcaligenes eutrophus H 16. — Ph. D. Thesis, University of Göttingen.Google Scholar
  58. Schneider, K., Rudolph, V. and Schlegel, H. G. 1973. Description and physiological characterization of a coryneform hydrogen bacterium strain 14 g. — Arch. Mikrobiol. 93: 179–193.Google Scholar
  59. Siebert, D. 1969. Über propanverwertende wasserstoffoxydierende Bakterien und die Charakterisierung eines Förderungsfaktors. — Ph. D. Thesis, University of Göttingen.Google Scholar
  60. Söhngen, N. L. 1906. Über Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. — Zentbl. Bakteriol. ParasitKde Abt. II. 15: 513–517.Google Scholar
  61. Takamiya, A. and Tubaki, K. 1956. A new form of streptomyces capable of growing autotrophically. — Arch. Mikrobiol. 25: 58–64.Google Scholar
  62. Tunail, N. and Schlegel, H. G. 1974. A new coryneform hydrogen bacterium: Corynebacterium autotrophicum strain 7 C. I. Characterization of the wild type strain. — Arch. Microbiol. 100: 341–350.Google Scholar
  63. Wiegel, J. and Schlegel, H. G. 1976. Enrichment and isolation of nitrogen fixing hydrogen bacteria. — Arch. Microbiol. 107: 139–142.Google Scholar
  64. Yamada, K. and Komagata, K. 1972. Taxonomic studies on coryneform bacteria. V. Classification of coryneform bacteria. — J. Gen. Appl. Microbiol. 18: 417–431.Google Scholar

Copyright information

© H. Veenman en Zonen B.V. 1976

Authors and Affiliations

  • H. G. Schlegel
    • 1
    • 2
  1. 1.Institut für MikrobiologieUniversität GöttingenBRD
  2. 2.Gesellschaft für Strahlenund Umweltforschung mbH in GöttingenBRD

Personalised recommendations