Environmental Monitoring and Assessment

, Volume 42, Issue 1–2, pp 143–161 | Cite as

Methane emissions from natural wetlands

  • Zhengping Wang
  • Dong Zeng
  • William H. PatrickJr.


Methane is considered one of the most important greenhouse gases in the atmosphere. Because of the strict anaerobic conditions required by CH4-generating microorganisms, natural wetland ecosystems are one of the main sources of biogenic CH4. The total natural wetland area is estimated to be 5.3 to 5.7 × 1012 m2, making up less than 5% of the Earth's land surface. However, natural wetland plays a disproportionately large role in CH4 emissions. Wetlands are likely the largest natural sources of CH4 to the atmosphere, accounting for about 20% of the current global annual emission. Out of the total amount of CH4 emitted, northern wetlands contribute 34%, temperate wetlands 5%, and tropical systems about 60%.

Because of the unique characteristics and high productivity, wetland ecosystems are important in the global carbon cycle. Natural wetlands are permanently or temporarily saturated. Strict anaerobic conditions consequently develop, which allows methanogenesis to occur. But the thin oxic layer and the oxic plant rhizophere promote activity of CH4-oxidizing bacteria or methanotrophs. Thus, both CH4 formation and consumption in wetland systems are microbiological processes and are controlled by many factors. Eight of the controlling factors, including carbon supply, soil oxidation-reduction status, pH, temperature, vegetation, salinity and sulfate content, soil hydrological conditions and CH4 oxidation are discussed in this paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M.: 1977, Introduction to Soil Microbiology, 2nd edn., John Wiley & Sons, Inc., New York.Google Scholar
  2. Alperin, M. J. and Reeburgh, W. S.: 1984, ‘Geochemical Evidence Supporting Anaerobic Methane Oxidation’, in: Crawford, R. and Hanson, R. (eds.), Microbial Growth on C 1 Compounds. American Society for Microbiology, Washington, D.C., pp. 282–289.Google Scholar
  3. Aselmann, I. and Crutzen, P. J.: 1989, ‘Global Distribution of Natural Freshwater Wetlands and Rice Paddies; Their Net Primary Productivity, Seasonality and Possible Methane Emissions’, J. Atmospheric Chem. 8, 307–358.Google Scholar
  4. Bachoon, D. and Jones, R. D.: 1992, ‘Potential Rates of Methanogenesis in Sawgrass Marshes with Peat and Marl Soils in the Everglades’, Soil Biol. Biochem. 24(1), 21–27.Google Scholar
  5. Barber, L. E. and Ensign, J. C.: 1979, ‘Methane Formation and Release in a Small Wisconsin Lake’, Geomicrobiol. J. 1, 341–353.Google Scholar
  6. Barlett, K. B., Crill, P. M., Bonassi, J. A., Richey, J. E. and Harriss, R. C.: 1990, Methane Flux from the Amazon River Floodplain: Emissions During Rising Water’, J. Geophys. Res. 95, 16773–16788.Google Scholar
  7. Bartlett, K. B. and Harriss, R. C.: 1993, ‘Review and Assessment of Methane Emissions from Wetlands’, Chemosphere 26, 261–320.Google Scholar
  8. Blake, D. R.: 1984, ‘Increasing Concentrations of Atmospheric Methane’, Ph.D. dissertation, University of California at Irvine, 213 pp.Google Scholar
  9. Bouwman, A. F.: 1990, Soils and the Greenhouse Effect, John Wiley and Sons, New York, pp. 1–21.Google Scholar
  10. Burke, R. A. Jr., Barber, T. R. and Sackett, W. M.: 1988, ‘Methane Flux and Stable Hydrogen and Carbon Isotope Composition of Sedimentary Methane from the Florida Everglades, Global Biogeochem. Cycles 2, 329–340.Google Scholar
  11. Capone, D. G. and Kiene, R. P.: 1988, ‘Comparison of Microbial Dynamics in Marine and Freshwater Sediments: Contrasts in Anaerobic Carbon Metabolism’, Limnol. Oceanogr. 33, 725–749.Google Scholar
  12. Cappenberg, T. E.: 1974, ‘Interrelations Between Sulfate-Reducing and Methane-Producing Bacteria in Bottom Deposits of a Fresh-Water Lake, I. Field Observation”, Anton. Leeuwenhoek. J. Microbiol. Serol. 40, 285–295.Google Scholar
  13. Chanton, J.P. and Dacey, J. W. H.: 1991, ‘Effects of Vegetation on Methane Flux Reservoirs and Carbon Isotropic Composition’, in: Sharkey, T. D., Holland, E. A. and Mooney, H. A. (eds.), Trace Gas Emissions from Plants, Academic Press, Inc., San Diego, Calif.Google Scholar
  14. Cicerone, R. J., Shetter, J. D. and Delwiche, C. C.: 1983, ‘Seasonal Variation of Methane Flux from a california Rice Paddy’, J. Geophys. Res. 88, 11022–11024.Google Scholar
  15. Cicerone, R. J. and Oremland, R. S.: 1988, ‘Biogeochemical Aspects of Atmospheric Methane’, Global Biogeochem. Cycles 2, 299–327.Google Scholar
  16. Conrad, R.: 1989, ‘Control of Methane Production in Terrestrial Ecosystems’, in: Andreae, M. O. and Schimel, D. S. (eds.), Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, Dahlem Konferenzen, Wiley and Sons, New York, Chichester, pp. 39–58.Google Scholar
  17. Crawford, W.: 1984, ‘Methane Production in Minnesota Peat Lands’, Appl. Environ. Microbiol. 47, 1266–1271.Google Scholar
  18. Crill, P. M., Bartlett, K. B., Harris, R. C., Verry, E. S., Sebacher, D. I., Madzar, L. and Sanner, W.: 1988, ‘Methane Flux from Minnesota Peatlands’, Global Biogeochem. Cycles 2, 371–384.Google Scholar
  19. Crill, P. M., Harris, R. C. and Bartlett, K. B.: 1991, ‘Methane Fluxes from Terrestrial Wetland Environments’, in: Rogers, J. E. and Whitman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, American Society for Microbiology, Washington, D.C., pp. 91–109.Google Scholar
  20. Crozier, C. R., DeLaune, R. D. and Patrick, W. H. Jr.: 1995, ‘Methane Production in Mississippi Deltaic Freshwater Wetland Soil as a Function of Excess Soil Reductant Capacity’, in: Lai, R, Kimbal, J., Levine, E. and Stewart, B. A. (eds.), Soil Management and Greenhouse Effect, Lewis Publishers, pp. 247–255.Google Scholar
  21. Dacey, J. W. H. and Klug, M. J.: 1979, ‘Methane Efflux from Lake Sediments Through Water Lilies’, Science 203, 1253–1255.Google Scholar
  22. De Bont, J. A. M., Lee, K. K. and Bouldin, D. F.: 1978, ‘Bacterial Oxidation of Methane in a Rice Paddy’, Ecol. Bull. 26, 91–96.Google Scholar
  23. DeLaune, R. D., Smith, C. J. and Patrick, W. H. Jr.: 1983, ‘Methane Released from Gulf Coast Wetlands’, Tellus 35B, 8–15.Google Scholar
  24. DeLaune, R. D., Smith, C. J. and Patrick, W. H. Jr.: 1986, ‘Methane Production in Mississippi River Deltaic Plant Peat’, Organ. Geochem. 9, 193–197.Google Scholar
  25. Devol, A. H.: 1983, ‘Methane Oxidation Rates in the Anaerobic Sediments of Saanich Inlet’, Limnol. Oceanogr. 39, 738–742.Google Scholar
  26. Dunfield, P., Knowles, R., Dumont, R. and Moore, T. R.: 1993, ‘Methane Production and Consumption in Temperate and Subarctic Peat Soils: Response to Temperature and pH’, Soil Biol. Biochem. 25, 321–326.Google Scholar
  27. Ehhalt, D. H.: 1988, ‘How Has the Atmospheric Concentration of CH4 changed?’, in: Rowland, F. S. and Isaksen, I. S. A. (eds.), The Changing Atmosphere, Wiley and Sons, Chichester, pp. 25–32.Google Scholar
  28. Feely, H. W. and Kulp, J. L.: 1957, ‘Origin of Gulf Coast Salt-Dome Sulfur Deposits’, Bull. A. Assoc. Pet. Geol. 41, 1802.Google Scholar
  29. Franklin, M. J., Wiebe, W. J. and Whitman, W. B.: 1988, ‘Populations of Methanogenic Bacteria in a Georgia Salt Marsh’, Appl. Environ. Microbiol. 54, 1151–1157.Google Scholar
  30. Freeman, C., Hudson, J., Lock, M. A., Reynolds, B. and Swanson, C.: 1994, ‘A Possible Role of Sulphate in the Suppression of Wetland Methane Fluxes Following Drought’, Soil Biol. Biochem. 26, 1439–1442.Google Scholar
  31. Frenzel, P., Thebrath, B. and Conrad, R.: 1990, ‘Oxidation of Methane in the Oxic Surface Layer of a Deep Lake Sediment (Lake Constance)’, FEMS Microbiol. Ecol. 73, 149–158.Google Scholar
  32. Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P. and Fraser, P. J.: 1991, ‘Three-Dimensional Model Synthesis of the Global Methane Cycle’, J. Geophys. Res. 96, 13.033–13.065.Google Scholar
  33. Galchenko, V. F., Lein, A. and Ivanov, M.: 1990, ‘Biological Sinks of Methane’, in: Andreae, M. O. and Schimel, D. S. (eds.), Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. Dahlem Konferenzen. Wiley and Sons, Chichester, pp. 59–71.Google Scholar
  34. Gerard, G. and Chanton, J.: 1993, ‘Quantification of Methane Oxidation in the Rhizosphere of Emergent Aquatic Macrophytes: Defining Upper Limits’, Biogeochemistry 23, 79–97.Google Scholar
  35. Hanson, R. S.: 1980, ‘Ecology and Diversity of Methylotrophic Organisms’, Advances in Applied Microbiology, Academic Press, New York, vol. 26, pp. 3–40.Google Scholar
  36. Harriss, R. C. and Sebacher, D. I.: 1981, ‘Methane Flux in Forested Freshwater Swamps of the Southeastern United States’, Geophys. Res. Lett. 8, 1002–1004.Google Scholar
  37. Harriss, R. C., Sebacher, D. I., Bartlett, K. B., Bartlett, D. S. and Crill, P. M.: 1988, ‘Sources of Atmospheric Methane in the South Florida Environment’, Global Biogeochem. Cycles 2, 231–243.Google Scholar
  38. Heyer, J. and Suckow, R.: 1985, ‘Okologische Untersuchungen der Methanoxidation in einem sauren Moorsee’, Limnologica 6, 247–266.Google Scholar
  39. Hoehler, T. M., Alperin, M. J., Albert, D. B. and Martens, C. S.: 1994, ‘Field and Laboratory Studies of Methane Oxidation in an Anoxic Marine Sediment: Evidence for a Methanogen-Sulfate Reducer Consortium’, Global Biogeochem. Cycles 8, 451–463.Google Scholar
  40. Holzapfel-Pschorn, A., Conrad, R. and Seiler, W.: 1985, ‘Production and Emission of Methane in Rice Paddies’, FEMS Microbiol. Ecol. 31, 343–351.Google Scholar
  41. Jakobson, P., Patrick, W. H. Jr. and Williams, B. G.: 1981, ‘Sulfide and Methane Formation in Soils and Sediments’, Soil Science 132, 279–287.Google Scholar
  42. Jones, J. G. and Simon, B. M.: 1981, ‘Differences in Microbial Decomposition Processes in Profundal and Litterol Sediments, with Particular Reference to the Nitrogen Cycle’, J. Gen. Microbiol. 123, 297–312.Google Scholar
  43. Khan, A. W., Trottier, T. M., Patel, G. B. and Martin, S. M.: 1970, ‘Nutrient Requirement for the Degradation of Cellulose to Methane by a Mixed Population of Anaerobes’, J. Gen. Microbiol. 112, 365–372.Google Scholar
  44. Kiene, R. P.: 1991, ‘Production and Consumption of Methane in Aquatic Systems’, in: Rogers, J. E. and Whitman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, American Society for Microbiology, Washington, D.C., pp. 111–146.Google Scholar
  45. King, G. M. and Wiebe, W. J.: 1978, ‘Methane Release from Soils of a Georgia Salt Marsh’, Geochim. Cosmochim. Acta 42, 343–348.Google Scholar
  46. King, G. M.: 1984, ‘Utilization of Hydrogen Acetate and “Non-Competitive” Substrates by Methanogenic Bacteria in Marine Sediments’, Geomicrobiol. J. 3, 275–306.Google Scholar
  47. King, G. M.: 1990, ‘Regulation by Light of Methane Emissions from a Wetland’, Nature (London) 345, 513–515.Google Scholar
  48. Kuivila, K. M., Murray, J. M., Devol, A. H., Lidstorm, M. E. and Reimers, C. E.: 1988, ‘Methane Cycling in the Sediments of Lake Washington’, Limnol. Oceanogr. 33, 571–581.Google Scholar
  49. Lansdown, J. M., Quay, P. D. and King, S. L.: 1992, ‘CH4 Production via CO2 Reduction in a Temperate Bog: A Source of 13C-depleted CH4’, Geochim. Cosmochim. Acta 56, 3493–3503.Google Scholar
  50. Martens, C. S. and Berner, R. A.: 1974, ‘Methane Production in the Interstitial Water of Sulfate-Depleted Marine Sediments’, Science 185, 1167–1169.Google Scholar
  51. Matthews, E. and Fung, I.: 1987, ‘Methane Emissions from Natural Wetlands: Global Distribution, Area and Environmental Characteristics of Sources’, Global Biogeochem. Cycles 1, 61–86.Google Scholar
  52. Mitsch, W. J. and Gosselink, J. G.: 1993, Wetlands, 2nd edn. Van Nostrand Reinhold, New York.Google Scholar
  53. Moore, T. R. and Knowles, R.: 1987, ‘Methane and Carbondioxide Evolution from Subarctic Flux’, Can. J. Soil Sc. 67, 77–81.Google Scholar
  54. Moore, T. R. and Knowles, R.: 1990, ‘Spatial and Temporal Variations of Methane Flux from Subarctic Northern Boreal Fens’, Global Biogeochim. Cycles 4, 29–46.Google Scholar
  55. Nissenbaum, A., Presley, B. J. and Kaplan, I. R.: 1972, ‘Early Diagenesis in a Reducing Fjord, Saanich Inlet, British Columbia. I. Chemical and Isotopic Changes in Major Components of Interstitial Water’, Geochim. Cosmochim. Acta 36, 1007–1027.Google Scholar
  56. Nouchi, I., Mariko, S. and Aoki, K.: 1990, ‘Mechanism of Methane Transportation from the Rhizosphere to the Atmosphere Through Rice Plants’, Plant Physiol. 94, 59–66.Google Scholar
  57. Oremland, R., Marsh, L. M. and Polein, S.: 1982, ‘Methane Production and Simultaneous Sulfate Reduction in Anoxic Marsh Sediments’, Nature 296, 143–145.Google Scholar
  58. Oremland, R. S.: 1988, ‘Biogeochemistry of Methanogenic Bacteria’, in: Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms, John Wiley and Sons, New York, pp. 641–706.Google Scholar
  59. Patrick, W. H. Jr. and DeLaune, R. D.: 1977, ‘Chemical and Biological Redox Systems Affecting Nutrient Availability in the Coastal Wetlands’, Geosci. Man 18, 131–137.Google Scholar
  60. Phelps, T. J. and Zeikus, J. G.: 1984, ‘Influence of pH on Terminal Carbon Metabolism in Anoxic Sediments from a Mildly Acidic Lake’, Appl. Environ. Microbiol. 48, 1088–1095.Google Scholar
  61. Post, W. M.: 1990, ‘Report of a Workshop on Climate Feedbacks and the Role of Peatlands, Tundra, and Boreal Ecosystems in the Global Carbon Cycle’, Publ. No. 3289. Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, p. 32.Google Scholar
  62. Prieme, A.: 1994, ‘Production and Emission in a Brackish and a Freshwater Wetland’, Soil Biol. Biochem. 26(1), 7–18.Google Scholar
  63. Rasmussen, R. A. and Khalil, M. A. K.: 1983, ‘Global Production of Methane by Termites’, Nature 301, 700–702.Google Scholar
  64. Reddy, K. R. and Patrick, W. H. Jr.: 1984, ‘Nitrogen Transformations and Loss in Flooded Soils and Sediments’, CRC Crit. Rev. Environ. Control 13, 273–309.Google Scholar
  65. Reeburgh, W. S. and Alperin, M. J.: 1988, ‘Studies on Anaerobic Methane Oxidation’, Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband Heft. 66, S. 367–375.Google Scholar
  66. Rudd, J. W. and Hamilton, R. D.: 1978, ‘Methane Cycling in a Eutrophic Shield Lake and Its Effects on Whole Lake Metabolism’, Limnol. Oceanogr. 23, 337–348.Google Scholar
  67. Rudd, J. W. and Taylor, C. D.: 1980, ‘Methane Cycling in Aquatic Environments’, Adv. Aquat. Microbiol. 2, 77–150.Google Scholar
  68. Sansone, F. J. and Martens, C. S.: 1981, ‘Methane Production from Acetate and Associated Methane Fluxes from Coastal Sediments’, Science 211, 707–709Google Scholar
  69. Schipper, L. A. and Reddy, K. R.: 1994, ‘Methane Production and Emissions from Four Reclaimed and Pristine Wetlands of Southeastern United States’, Soil Sci. Soc. Am. J. 58, 1270–1275.Google Scholar
  70. Schütz, H., Seiler, W. and Renneberg, H.: 1990, ‘Soil and Land Use Related Sources and Sinks of Methane (CH4) in the Context of the Global Methane Budget’, in: Bouwman, A. F. (ed.), Soils and the Greenhouse Effect, John Wiley and Sons, New York, pp. 269–285.Google Scholar
  71. Sebacher, I. D., Harriss, R. C. and Bartlett, K. B.: 1985, ‘Methane Emission to the Atmosphere Through Aquatic Plants’, J. Environ. Qual. 14, 40–46.Google Scholar
  72. Sebacher, D. I., Harriss, R. C., Bartlett, K. B., Sebacher, S. M. and Grice, S. S.: 1986, ‘Atmospheric Methane Sources: Alaskan Tundra Bogs, an Alpine Fen, and a Subarctic Boreal Marsh’, Tellus 38B, 1–10.Google Scholar
  73. Seiler, W.: 1984, ‘Contribution of Biological Processes to be Global Budget of CH4 in the Atmosphere’, in: Klug, M. J. and Reddy, C. A. (eds.), Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington, D.C., pp. 468–477.Google Scholar
  74. Seiler, W. and Conrad, R.: 1987, ‘Contribution of Tropical Ecosystems to the Global Budgets of Trace Gases, Especially CH4, H2, CO2 and N2O’, in: Dickinson, R. E. (ed.), Geophysiology of Amazona, Vegetation and Climate Interactions, Wiley and Sons, New York, pp. 133–160.Google Scholar
  75. Sorrell, B. K. and Boon, P. I.: 1992, ‘Biogeochemistry of Billabond Sediments. 2. Seasonal Variations in Methane Production’, Freshwater Biol. 27, 435–445.Google Scholar
  76. Sweerts, J.-P.R.A., Kelly, C. A., Rudd, J. W. M., Hesslein, R. and Cappenberg, T. E.: 1991, ‘Similarity of Whole-Sediment Molecular Diffusion Coefficients in Freshwater Sediments of Low and High Porosity’, Limnol. Oceanogr. 36, 335–342.Google Scholar
  77. Thebrath, B., Rothfuss, F., Whiticar, M. J. and Conrad, R.: 1993, ‘Methane Production in Littoral Sediment of Lake Constance’, FEMS Microbiol. Ecol. 102, 279–289.Google Scholar
  78. Tyler, S. C.: 1991, ‘The Global Methane Budget’, in: Rogers, J. E. and Whitman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, American Society for Microbiology, Washington, D.C., pp. 7–35.Google Scholar
  79. Van Den Berg, L., Patel, G. B., Clark, D. S. and Lentz, C. P.: 1976, ‘Factors Affecting Rate of Methane Formation from Acetic Acid by Enriched Methanogenic Cultures’, Can. J. Microbiol. 22, 1312–1319.Google Scholar
  80. Vogels, G. D., Keltjens, J. T. and Van Der Drift, C.: 1988, ‘Biochemistry of Methane Production’, in: Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms, John Wiley & Sons, New York, pp. 707–770.Google Scholar
  81. Wang, Z., Delaune, R. D., Masscheleyn, P. H. and Patrick, W. H. Jr.: 1993, ‘Soil Redox and pH Effects on Methane Production in a Flooded Rice Soil’, Soil Sci. Soc. Am. J. 57, 382–385.Google Scholar
  82. Wahlen, S. C. and Reeburgh, W. S.: 1988, ‘A Methane Flux Time Series for Tundra Environments’, Global Biogeochem. Cycles 2, 399–409.Google Scholar
  83. Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., Southon, J., Shemesh, A., Fairbanks, R. and Broecker, W.: 1989, ‘Carbon-14 in Methane Sources and in Atmospheric Methane: the Contribution from Fossil Carbon’, Science 245, 286–290.Google Scholar
  84. Westerman: 1993, ‘Temperature Regulation of Methanogenesis in Wetlands’, Chemosphere 26, 321–328.Google Scholar
  85. Whiting, G. J., Chanton, J. P., Bartlett, D. S., and Happell, J. D.: 1991, ‘Relationships Between CH4 Emission, Biomass, and CO2 Exchange in a Subtropical Grassland’, J. of Geophys. Res. 96(D7), 13.067–13.071.Google Scholar
  86. Williams, R. J. and Crawford, R. L.: 1984, ‘Methane Production in Minnesota Peat Lands’, Appl. Environ. Microbiol. 47, 1266–1271.Google Scholar
  87. Williams, R. J. and Crawford, R. L.: 1985, ‘Methanogenic Bacteria Including an Acid Tolerant Strain from Peatlands’, Appl. Environ. Microbiol. 50, 1.542–1.544.Google Scholar
  88. Wilson, J. O., Crill, P. M., Bartlett, B. B., Sebacher, D. L., Harriss, R. C. and Sass, R. L.: 1989, ‘Seasonal Variation of Methane Emissions from a Temperate Swamp’, Biogeochemistry 8, 55–71.Google Scholar
  89. Winfrey, M. R. and Zeikus, J. G.: 1977, ‘Effect of Sulfate on Carbon and Electron Flow During Microbial Methanogenesis in Freshwater Sediments’, Appl. Environ. Microbiol. 33, 275–281.Google Scholar
  90. Wolfe, R. S. and Higgins, I. J.: 1979, ‘Microbial Biochemistry of Methane — A Study in Contrasts’, Int. Rev. Biochem. 21, 267–353.Google Scholar
  91. Wuethrich, B.: 1994, ‘Wetlands Provide Clue to Greenhouse Gas’, Science News 144, 134.Google Scholar
  92. Yavitt, J. B., Lang, G. E. and Downey, D. M.: 1988, ‘Potential Methane Production and Methane Oxidation Rates in Peatland Ecosystems of the Appalachian Mountains, United States’, Global Biogeochem. Cycles 2, 253–268.Google Scholar
  93. Zehnder, A. J. B. and Brock, T. D.: 1979, ‘Methane Formation and Methane Oxidation by Methanogenic Bacteria’, J. Bacteriol. 137, 420–432.Google Scholar
  94. Zehnder, A. J. B. and Brock, T. D.: 1980, ‘Anaerobic Methane Oxidation: Occurrence and Ecology’, Appl. Environ. Microbiol. 39, 194–204.Google Scholar
  95. Zeikus, J. G. and Winfrey, M.: 1976, ‘Temperature Limitation of Methanogenesis in Aquatic Sediments’, Appl. Environ. Microbiol. 31, 99–107.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Zhengping Wang
    • 1
  • Dong Zeng
    • 1
  • William H. PatrickJr.
    • 1
  1. 1.Wetland Biogeochemistry InstituteLouisiana States UniversityBaton RougeUSA

Personalised recommendations