Environmental Monitoring and Assessment

, Volume 42, Issue 1–2, pp 3–18 | Cite as

Environmental impact of biomethanogenesis

  • David P. Chynoweth


The environmental impact of biomethanogenesis is related to its ecological role, accumulation and effect as a greenhouse gas, and application in anaerobic digestion for conversion of biomass and wastes to methane and compost. Biological formation of methane is the process by which bacteria decompose organic matter using carbon dioxide as an electron acceptor in the absence of dioxygen or other electron acceptors. This microbial activity is responsible for carbon recycling in anaerobic environments, including wetlands, rice fields, intestines of animals sediments, and manures. The mixed consortium of microorganisms involved includes a unique group of bacteria, the methanogens, which may be considered to be in a separate kingdom based on genetic and phylogenetic variance from all other life forms. Because methane is a significant and increasing greenhouse gas, its source fluxes and their potential reduction are of concern. Biomethanogenesis may be harnessed for reduction of wastes and conversion of renewable resources to significant quantities of substitute natural gas which could mitigate carbon dioxide and other pollutants related to use of fossil fuels.

Key words

biomethanogenesis methane greenhouse gas global warming anaerobic digestion environmental 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bird, K. T. and Benson, P. H. (eds.): 1987, Seaweed Cultivation for Renewable Resources, Elsevier, Amsterdam.Google Scholar
  2. Blake, D. R. and Rowland, F. W.: 1988, ‘Continuing Worldwide Increase in Tropospheric Methane, 1978 to 1987’, Science 239, 1129–1131.Google Scholar
  3. Boone, D. and Mah, R.: 1987, ‘Transitional Bacteria’, in: Chynoweth, D. P. and Isaacson, R. (eds.), Anaerobic Digestion of Biomass, Elsevier Applied Science, London, pp. 35–48.Google Scholar
  4. Breznak, J. A.: 1982, ‘Intestinal Microbiota of Termites and Other Xylophagous Insects’, Ann Rev. Microbiol. 35, 323–343.Google Scholar
  5. Bryant, M. P. Wolin, E. A., Wolin, M. J. and Wolfe, R. S.: 1967, ‘Methanobacillus omelianskii, a Symbiotic Association of Two Species of Bacteria’, Arch Mikrobiol. 59, 20–31.Google Scholar
  6. Chynoweth, D. P.: 1992, ‘Global Significance of Biomethanogenesis’, in: Dunnette, D. and O'Brian, R. (eds.), Global Environmental Chemistry, ACS Symposium Series 483, pp. 338–351.Google Scholar
  7. Chynoweth, D. P., Bosch, G., Early, J. F. K., Owens, J. and Legrand, R.: 1991, ‘Sequential Batch Anaerobic Composting of the Organic Fraction of Municipal Solid Waste’, Water Science and Technology 27, 1–14.Google Scholar
  8. Chynoweth, D. P., Fannin, K. F. and Srivastava, V.: 1987, ‘Biological Gasification of Marine Algae’, in: Bird, K. T. and Benson, P. H. (eds.), Seaweed Cultivation for Renewable Resources, Elsevier, Amsterdam, pp. 285–303.Google Scholar
  9. Chynoweth, D. P. and Isaacson, R. (eds.): 1987, Anaerobic Digestion of Biomass, Elsevier Applied Science, London.Google Scholar
  10. Chynoweth, D. P. and Jerger, D. E.: 1985, ‘Anaerobic Digestion of Woody Biomass’, Devel. Indust. Microbiol. 265, 235–246.Google Scholar
  11. Collins, N. M. and Wood, T. G.: 1984, ‘Termites and Atmospheric Gas Production’, Science 224, 84–86.Google Scholar
  12. Daniels, L., Sparling, R. and Sprott, G. D.: 1984, ‘The Bioenergetics of Biomethanogenesis’, Biochimica et Biophysica Acta 768, 113–163.Google Scholar
  13. De Rosa, M., Gambacorta, A. and Gliozzi, A.: 1986, ‘Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids’, Microbiol. Rev. 50, 70–80.Google Scholar
  14. Ferry, J. G. (ed.): 1993, Methanogenesis: Ecology, Physiology, and Genetics, Chapman and Hall, New York.Google Scholar
  15. Hendrick, D. B. and White, D. C.: 1993, ‘Application of Analytical Microbial Ecology to the Anaerobic Conversion of Biomass to Methane’, Biomass and Bioenergy 5, 247–259.Google Scholar
  16. Hungate, R.: 1966, The Rumen and Its Microbes, Academic Press, New York and London.Google Scholar
  17. Hobson, P. N. (ed.): 1988, The Rumen Ecosystem, Elsevier Applied Science, London.Google Scholar
  18. IEA (Internat. Energy Agency): 1994, Biomas From Municipal Solid Waste: Overview of Systems and Markets for Anaerobic Digestion of MSW, Report of IEA Task XI: Conversion of MSW Feedstock to Energy, Activity 4: Anaerobic digestion of MSW.Google Scholar
  19. Kelly, C. A. and Chynoweth, D. P.: 1979, ‘Methanogenesis: Measurement of Chemo-Organotrophic (heterotrophic) Activity in Anarobic Lake Sediments’, in: Costerton, J. W. and Colwell, R. R. (eds.), Native Aquatic Bacteria: Enumeration, Activity, and Ecology, ASTM 695; American Society for Testing and Materials: Philadelphia, PA, 1979, pp. 164–179.Google Scholar
  20. Kelly, C. A. and Chynoweth, D. P.: 1982, ‘The Contribution of Temperature and Organic Input in Controlling Rates of Sediment Methanogenesis’, Kimnol. Ocean. 26, 891–897.Google Scholar
  21. Kenney, W. A., Sennerby-Forsse, L. and Layton, P.: 1990, ‘Review of Biomass Quality Research Relevant to the Use of Poplar and Willow for Energy Conversion’, Biomass 21, 163–188.Google Scholar
  22. Kerr, R. A.: 1989, ‘Oil and Gas Estimates Plummet’, Science 245, 1330–1331.Google Scholar
  23. Ke-Yun, D., Yi-zhang, Z. and Li-Bin, W.: 1988, ‘The Role of Biogas development in Improving Rural Energy’, in: Hall, E. and Hobson, P. N. (eds.), Anaerobic Digestion 1988, Pergamon Press, Oxford, pp. 295–302.Google Scholar
  24. Legrand, R.: 1993, ‘Methane From Biomass Systems Analysis and CO2 Abatement Potential’, Biomass and Bioenergy 5, 301–316.Google Scholar
  25. Legrand, R. and Warren, C. S.: 1987, ‘Biogas Generation From Community-Derived Wastes and Biomass in the U.S.’, Paper presented at the Tenth Annual Energy-Sources Technology Conf. and Exhib., ASME, Dallas, TX.Google Scholar
  26. McCarty, P. L.: 1982, ‘One Hundred Years of Anaerobic Treatment’, in: Hughes, D. E. et al. (eds.), Anaerobic Digestion 1991, Elsevier Biomedical Press, Amsterdam, pp. 3–22.Google Scholar
  27. Merck Index: 1983, Merck and Co., Inc. Rahway, NJ, pp. 852–853.Google Scholar
  28. Peck, M. W. and Archer, D. B.: 1989, ‘Methods for the Quantification of Methanogenic Bacteria’, Internat. Indust. Biotechnol. 9(3), 5–12.Google Scholar
  29. Peck, M. W. and Chynoweth, D. P.: 1992, ‘On-Line Monitoring of the Methanogenic Fermentation’, Biotech. Bioeng. 39, 151–160.Google Scholar
  30. Pohland, F. G. and Harper, S. R.: 1985, ‘Biogas developments in North America’, Anaerobic Digestion 1985, Quangzhou China, China State Biogas Association, pp. 41–82.Google Scholar
  31. Rasmussen, R. A. and Khalil, M. A. K.: 1983, ‘Global Production of Methane by Termites’, Nature 248, 1217–1219.Google Scholar
  32. Smith, W. H. and Frank, J. R. (eds.): 1988, Methane From Biomass: A Systems Approach, Elsevier Applied Sciences, London, 500 pp.Google Scholar
  33. Steven, C. M. and Engelkemeir, A.: 1988, ‘Stable Carbon Isotope Composition of Methane From Some Natural and Anthropogenic Sources’, J. Geophys. Res. 93, 725–733.Google Scholar
  34. Steele, L. P., Dlugokencky, E. J., Lang, P. M., Tans, P. P., Martin, R. C. and Masarie, K. A.: 1992, ‘Slowing Down of the Global Accumulation of Atmospheric Methane During the 1980s’, Nature 238, 313–316.Google Scholar
  35. Turick, C. E., Peck, W., Chynoweth, D. P., Jerger, D. E., White, E. H., Szuffa, L. and Kenney, W. A.: 1991, ‘Methane Fermentation of Woody Biomass’, Bioresource Technology 37, 141–147.Google Scholar
  36. U.S. EPA: 1993a, Current and Future Methane Emissions From Natural Sources, Kathlene Hogan (ed.), Report to Congress.Google Scholar
  37. U.S. EPA: 1993b, Opportunities to Reduce Anthropogenic Methane Emissions in the United States, Kathleen Hogan (ed.), Report to Congress.Google Scholar
  38. U.S. EPA: 1993c, Options for Reducing Methane Internationally, Volume I: Technical Options for Reducing Methane Omissions, Kathleen B. Hogan (ed.), Report to Congress.Google Scholar
  39. U.S. EPA: 1993d, Options for Reducing Methane Internationally, Volume II: International Opportunities for Reducing Methane Omissions, Kathleen B. Hogan (ed.), Report to Congress.Google Scholar
  40. Ward, R.: 1982, ‘Digesters for the Third World’, in: Hughes, D. E. et al. (eds.), Anaerobic Digestion 1981, Elsevier Biomedical Press, Amsterdam, pp. 315–344.Google Scholar
  41. Wilke, A. and Colleran, E.: 1989, ‘The development of the Anaerobic Fixed Bed Reactor and Its Application to the Treatment of Agricultural and Industrial Wastes’, in: Wise, D. L. (ed.), International Biosystems III, CRC Press, Boca Raton, FL, pp. 183–226.Google Scholar
  42. Woese, D. R.: 1987, ‘Bacterial Evolution’, Microbiol. Rev. 51, 221–271.Google Scholar
  43. Woods, T. J.: 1990, The Long-Term Trends in U.S. Gas Supply and Prices: The 1989 GRI Baseline Projection of U.S. Energy Supply and Demand to 2010, Gas Research Insights (GRI Publ.), Gas Institute, Chicago, IL.Google Scholar
  44. Zehnder, A. J. B.: 1988, Biology of Anaerobic Microorganisms, Wiley, New York.Google Scholar
  45. Zeikus, J. C.: 1977, ‘The Biology of Methanogenic Bacteria’, Bacteriol. Rev. 41, 514–541.Google Scholar
  46. Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O. and Crutzen, P. J.: 1982, ‘Termites: A Potentially Large Source of Atmospheric Methane, Carbon Dioxide, and Molecular Hydrogen’, Science 218, 563–565.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • David P. Chynoweth
    • 1
  1. 1.Department of Agricultural and Biological EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations