Advertisement

Antonie van Leeuwenhoek

, Volume 46, Issue 6, pp 601–610 | Cite as

Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri

  • T. J. Hutten
  • H. C. M. Bongaerts
  • C. van der Drift
  • G. D. Vogels
Physiology and Growth

Abstract

Methanosarcina barkeri grows in defined media with acetate, methanol or carbon dioxide as carbon sources. Methanol is used for methanogenesis at a 5 times higher rate as compared with the other substrates. M. barkeri can use the substrates simultaneously, but due to acidification or alkalification of the medium during growth on methanol or acetate, respectively, growth and methanogenesis may stop before the substrates are exhausted. Growth and methanogenesis on methanol or acetate are inhibited by the presence of an excess of H2; the inhibition is abolished by the addition of carbon dioxide, which probably serves as an essential source of cell carbon, in the absence of which methano-genesis ceases.

Keywords

Acetate Methanol Dioxide Carbon Dioxide Carbon Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cappenberg, Th. E. and Prins, R. A. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bacteria in bottom deposits of a fresh-water lake. III. Experiments with 14C-labeled substrates. — Antonie van Leeuwenhoek 40: 457–469.Google Scholar
  2. Doddema, H. J. and Vogels, G. D. 1978. Improved identification of methanogenic bacteria by fluorescence microscopy. — Appl. Environ. Microbiol. 36: 752–754.Google Scholar
  3. Ferguson, T. J. and Mah, R. A. 1979. Growth and methanogenesis by Methanosarcina strain 227 on acetate and hydrogen/carbon dioxide. — ASM Abstr. I 78, p. 108, 79th Ann. Meeting, Los Angeles, USA.Google Scholar
  4. Hippe, H., Caspari, D., Fiebig, K. and Gottschalk, G. 1979. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. —Proc. Nat. Acad. Sci. U.S.A. 76: 494–498.Google Scholar
  5. Hutten, T. J., de Jong, M. H., Peeters, B. P. H., van der Drift, C. and Vogels, G. D. 1981. Coenzyme M (2-Mercaptoethanesulfonic acid)-derivatives and their effects on methane formation from carbon dioxide and methanol by cell-free extracts of Methanosarcina barkeri. — J. Bacteriol. 145: in press.Google Scholar
  6. Jeris, J. S. and McCarthy, P. L. 1965. The biochemistry of methane fermentation using 14C tracers. — J. Water Pollut. Control Fed. 37: 178–192.Google Scholar
  7. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275.Google Scholar
  8. Mah, R. A., Smith, M. R. and Baresi, L. 1978. Studies on an acetate-fermenting strain of Methanosarcina. — Appl. Environ. Microbiol. 35: 1174–1184.Google Scholar
  9. Schnellen, Ch. G. T. P. 1947. Onderzoekingen over de methaangisting. Thesis Delft University of Technology. — De Maasstad, Rotterdam.Google Scholar
  10. Schönheit, P., Moll, J. and Thauer, R. K. 1980. Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. — Arch. Microbiol. 127: 59–65.Google Scholar
  11. Smith, P. H. and Mah, R. A. 1966. Kinetics of acetate metabolism during sludge digestion. — Appl. Microbiol. 14: 368–371.Google Scholar
  12. Smith, M. R. and Mah, R. A. 1978. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. — Appl. Environ. Microbiol. 36: 870–879.Google Scholar
  13. Stadtman, T. C. and Barker, H. A. 1951. Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentations by Methanosarcina. — J. Bacteriol. 61: 81–86.Google Scholar
  14. Weimer, P. J. and Zeikus, J. G. 1978a. One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. — Arch. Microbiol. 119: 49–57.Google Scholar
  15. Weimer, P. J. and Zeikus, J. G. 1978b. Acetate metabolism in Methanosarcina barkeri. — Arch. Microbiol. 119: 175–182.Google Scholar
  16. Weimer, P. J. and Zeikus, J. G. 1979. Acetate assimilation pathway of Methanosarcina barkeri. — J. Bacteriol. 137: 332–339.Google Scholar
  17. Zehnder, A. J. B. Huser, B. A., Brock, T. D. and Wuhrmann, K. 1980. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. — Arch. Microbiol. 124: 1–11.Google Scholar
  18. Zeikus, J. G., Weimer, P. J., Nelson, D. R. and Daniels, L. 1975. Bacterial methanogenesis: acetate as a methane precursor in pure culture. — Arch. Microbiol. 104: 129–134.Google Scholar

Copyright information

© H. Veenman en Zonen 1980

Authors and Affiliations

  • T. J. Hutten
    • 1
  • H. C. M. Bongaerts
    • 1
  • C. van der Drift
    • 1
  • G. D. Vogels
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations