Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 110, Issue 2, pp 61–74 | Cite as

Systemic effects of implanted prostheses made of cobalt-chromium alloys

  • R. Michel
  • M. Nolte
  • M. Reich
  • F. Löer3
Original Articles

Summary

Systemic effects of Co-Cr alloy/polyethylene hip joint prostheses were investigated using instrumental neutron activation to determine the concentrations of up to 16 elements. First, in a prospective study whole blood and serum taken from 10 patients from 1 day before to 90 days after implantation were analyzed. Secondly, in a retrospective study whole blood and serum from 23 patients who had had prostheses in place for up to 18 years were analyzed. For comparison, normal trace element levels in humans were determined by analyzing whole blood and serum from 21 patients. Finally, various tissues and organs from two deceased implant patients were analyzed and compared with normal concentrations obtained from the analysis of five “normal” patients without implants. In agreement with other recent investigations, our analyses of normal serum, whole blood, tissues, and organs show that most previously defined “normal” trace element concentrations were too high, chiefly owing to contamination and insufficient blanks. A detailed discussion shows that for many elements the ranges of normal concentrations have to be revised. This conclusion is of particular importance with respect to the sometimes conflicting earlier reports of systemic effects of metal prostheses. In the work reported here, both the prospective and the retrospective investigations of serum and whole blood showed massive Co enrichments as a consequence of implant corrosion. The data show a wide range of individual burdening, ranging from practically no effect to the most extreme values. The analyses of tissues from the vicinity of the implants in the two deceased implant patients showed strong local effects of Co, Cr, Zr, and Hf, the latter two elements originating from the X-ray contrast media in the bone cement. The analyses of organs revealed significant Co and Cr enrichment in several tissues and organs. Consequently, it can be seen that implant corrosion is not an occurrence of merely local significance, but one that affects the trace element status of the entire organism.

Keywords

Systemic Effect Neutron Activation Bone Cement Trace Element Concentration Element Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeln M (1977) Spurenelemente im Serum nach Implantation von Kobalt-Chrom-Totalendoprothesen der Hüfte: Untersuchungen mit Hilfe der Neutronenaktivierungsanalyse. Thesis, University of CologneGoogle Scholar
  2. 2.
    Abeln M, Ohnsorge J, Kasparek K (1980) Biochemische Untersuchungen der legierungsspezifischen Spurenelemente von Kobalt-Chrom-Hüftgelenktotalendoprothesen und AO-Winkelplatten im implantatnahen und implantatfernen Gewebe Bowie im Serum mit Hilfe der Neutronenaktivierungsanalyse. In: Jaeger M, Hackenbroch MH, Refior HJ (eds) Grenzschichtprobleme der Verankerung von Implantaten unter besonderer Berücksichtigung von Endoprothesen. Thieme, Stuttgart, pp 200–209Google Scholar
  3. 3.
    Black J (1988) Does corrosion matter? (Editorial). J Bone Joint Surg [Br] 70:517–520Google Scholar
  4. 4.
    Bowen HJM (1988) Trace elements in biological samples. In: Cesaro R (ed) Nuclear analytical techniques in medicine. Elsevier, Amsterdam, pp 1–17Google Scholar
  5. 5.
    Brun R (1975) Epidemiology of contact dermatitis in Geneve (1000 cases). Contact Dermatitis 1:214–217Google Scholar
  6. 6.
    Coleman RF (1973) Concentration of implant products in the body. J Bone Joint Surg [Br] 55:422Google Scholar
  7. 7.
    Cornelis R, Versieck J (1980) Critical evaluation of the literature values of eighteen trace elements in human serum or plasma. In: Braetter P, Schramel P (eds) Trace element analytical chemistry in medicine and biology. De Grumer, Berlin, pp 587–600Google Scholar
  8. 8.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593Google Scholar
  9. 9.
    Dobbs HS, Minski MJ (1980) Metal ion release after total hip replacement. Biomaterials 1:193–198Google Scholar
  10. 10.
    Furst A, Radding SB (1979) Unusual metals as carcinogens. Biol Trace Elem Res 1:169–181Google Scholar
  11. 11.
    Gillespie WI, Frampton CMA, Henderson RI, Ryan PM (1988) The incidence of cancer following total hip replacement. J Bone Joint Surg [Br] 70:539–542Google Scholar
  12. 12.
    Hildebrand HF, Ostapczuk P, Mercier JF, Stoeppler M, Roumazeille B, Decozlx J (1988) Orthopaedic implants and corrosion products: ultrastructural and analytical studies of 65 patients. In: Hildebrand HF, Champy M (eds) Biocompatibility of Co-Cr-Ni alloys. Plenum, NewYork (NATO-ASI series), pp 133–153Google Scholar
  13. 13.
    Hofmann J, Michel R, Holm R, Zilkens J (1981) Corrosion behaviour of stainless steel implants in biological media. Surf Interf Anal 3:110–117Google Scholar
  14. 14.
    Hofmann J, Wiehl N, Michel R, Löer F, Zilkens J (1982) Neutron activation studies of the in-body corrosion of hip-joint prostheses made of Co-Cr alloys. J Radional Chem 70:85–107Google Scholar
  15. 15.
    ICRP (International Commision on Radiological Protection) (1975) Report of the task group on reference man. Pergamon, Oxford (ICRP publication no. 23)Google Scholar
  16. 16.
    Iyengar GV (1985) Geographical variations in the trace element concentrations of human milk. In: Gladtke E, Heiman G, Lombeek I, Eckert I (eds) Thieme, Stuttgart, pp 183–188Google Scholar
  17. 17.
    Iyengar GV (1987) Reference values for the concentrations of As, Cd, Co, Cr, Cu, Fe, I, Hg, Mn, Mo, Ni, Pb, Se, and Zn in selected human tissues and body fluids. Biol Trace Elem Res 12:263–295Google Scholar
  18. 18.
    Iyengar GV, Kollmer WE, Bowen HJM (1978) The elemental composition of human tissues and body fluids. Verlag Chemie, WeinheimGoogle Scholar
  19. 19.
    Jones DA, Lucas HK, O'Driscoll M, Price CHG, Wibberley B (1975) Cobalt toxicity after McKee hip arthroplasty. J Bone Joint Surg [Br] 57:289–296Google Scholar
  20. 20.
    Kasparek K, Schicha H, Siller V, Feinendegen LE (1972) Normalwerte von Spurenelementen im menschlichen Serum und Korrelation zum Lebensalter und zur Serum-Eiweiß-Konzentration. Strahlentherapie 143:468–472Google Scholar
  21. 21.
    Löer F, Zilkens J, Michel R, Freisem-Broda G, Bigalke KH (1983) Gewebebelastung mit körperfremden Spurenelementen durch Roentgenkontrastmittel der Knochenzemente. Z Orthop 121:255–259Google Scholar
  22. 22.
    Mertz W (1981) The essential trace elements. Science 213:1332–1338Google Scholar
  23. 23.
    Michel R (1987) Trace metal analysis in biocompatibility testing. Crit Rev Biocompat 3:235–317Google Scholar
  24. 24.
    Michel R, Hofmann J, Löer F, Zilkens J (1984) Trace element burdening of human tissues due to the corrosion of hip-joint prostheses made of cobalt-chromium alloys. Arch Orthop Trauma Surg 103:85–95Google Scholar
  25. 25.
    Michel R, Iyengar GV, Zeisler R (1985) Current aspects of multielement analysis in the life science. In: Sansoni B (ed) Instrumentelle Multielementanalyse. VCH, Weinheim, pp 607–619Google Scholar
  26. 26.
    Michel R, Loer, F, Nolte M, Reich M, Zilkens J (1987) Neutron activation analysis of human tissues, organs and body fluids to describe the interaction of orthopaedic implants made of cobalt-chromium alloys with the patient's organism. J Radioanal Nucl Chem 113:83–95Google Scholar
  27. 27.
    Michel R, Löer F, Nolte M, Reich M, Zilkens J (1988) Phenomenology of the trace element burdening of the human organism by the in-body corrosion of Co-Cr-Ni alloys as revealed by neutron activation analysis. In: Hildebrand HF, Champy M (eds) Biocompatibility of Co-Cr-Ni alloys. Plenum, New York, pp 59–75 (NATO-ASI series)Google Scholar
  28. 28.
    Miehlke R, Henke G, Ehrenbrink H (1981) Kobalt- und Chromkonzentrationen in der Synovialflüssigkeit und im Blutserum nach Implantation von Kniegelenksendoprothesen mit Hilfe der Neutronenaktivierungsanalyse. Z Orthop 119:767–768Google Scholar
  29. 29.
    Minski MJ, Dobbs HS (1980) Neutron activation techniques applied to biomedical samples in particular tissues contaminated by stainless steel implants. In: Braetter P, Schramel P (eds) Trace element analytical chemistry in medicine and biology. De Gruyter, Berlin, pp 339–350Google Scholar
  30. 30.
    Nolte M (1986) Veränderungen des menschlichen Spurenelementhaushaltes durch Hüftgelenkstotalendoprothesen aus Co-Basis Legierungen. Thesis, University of CologneGoogle Scholar
  31. 31.
    Ohnsorge J, Abeln M, Zilkens J (1978) Spurenelementkonzentration verschiedener Gewebe, nachgewiesen mit Hilfe der Neutronenaktivierungsanalyse. Z Orthop 116:607–608Google Scholar
  32. 32.
    Rudner EJ, Clendenning WE, Epstein E, Fisher AA, Jillson OF, Jordan WP, Larsen W, Meibach H, Mitchell JC, Quinn SE, Schorr WF, Sulzberger MB (1973) Epidemiology of contact dermatitis in North America. Arch Dermatol 108:537–540Google Scholar
  33. 33.
    Schrauzer GN (1979) Trace elements in carcinogenesis. Adv Nutr Res 2:1Google Scholar
  34. 34.
    Schleupner KH (1986) Untersuchungen zur Frage der Sensibilisierung des Organismus durch die implantatspezifischen Materialien bei Patienten mit Hüftgelenkstotalendoprothesen. Thesis, University of AachenGoogle Scholar
  35. 35.
    Smith GK (1981) Systemic biocompatibility of metallic surgical implants. In: Williams DF (ed) Systemic aspects of biocompatibility, vol 2. CRC Press, Boca Raton, pp 1–22 (CRC series in biocompatibility)Google Scholar
  36. 36.
    Smith GK, Black J (1977) Models for systemic effects of metallic implants. In: Weinstein A, Horowitz E, Ruff AW (eds) Retrieval and analysis of orthopedic implants. US Dept. Comm., Washington, pp 23–30 (NBS special publication 472)Google Scholar
  37. 37.
    Steinemann SG, Perren SM (1984) Titanlegierungen fur Implantate — Physikochemische Prinzipien, in Entwicklungstendenzen bei Implantatwerkstoffen. Deutscher Verband für Materialprüfung, Berlin, pp 63–73Google Scholar
  38. 38.
    Sundermann FW Jr (1977) Metal carcinogenesis. In: Goyer RA, Mchlman MA (eds) Toxicology of the trace elements. Wiley, New York, pp 237–295Google Scholar
  39. 39.
    Taylor DM (1973) Trace metal patterns and disease. J Bone Joint Surg [Br] 55:422–423Google Scholar
  40. 40.
    Valkovic V (1988) Human hair, vol 1: Fundamentals and methods for measurement of elemental composition. CRC Press, Boca RatonGoogle Scholar
  41. 41.
    Versieck J (1985) Trace elements in human body fluids and tissues. Crit Rev Clin Lab Sci 22:97–184Google Scholar
  42. 42.
    Versieck J, Vanballenberghe L, De Kesel A, Hoste J, Wallaeys B, Vandenhaute J, Baeck N, Steyaert H, Byrne AR, Sundermann FW (1988) Certification of a second-generation biological reference material (freeze-dried human serum) for trace element determination. Anal Chim Acta 204:63–75Google Scholar
  43. 43.
    Versieck J, Cornelis R (1980) Normal levels of trace elements in human blood, plasma or serum. Anal Chim Acta 116:217–254Google Scholar
  44. 44.
    Versieck J, Cornelis R (1989) Trace elements in human plasma or serum. CRC Press, Boca RatonGoogle Scholar
  45. 45.
    World Health Organisation (1978) Principles and methods for evaluating the toxicity or chemicals, part 1 WHO geneva pp 19–61 (Environmental Health Criteria 6)Google Scholar
  46. 46.
    Zeisler R, Harrison SH, Wise SA (1983) The pilot national environmental specimen bank — analysis of human liver specimens. US Dept. Comm., Washington (NBS special publication 656)Google Scholar
  47. 47.
    Zeisler R, Harrison SH, Wise SA (1984) Trace elements in human livers using quality control in the complete analytical process. Biol Trace Elem Res 6:31–49Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • R. Michel
    • 1
  • M. Nolte
    • 2
  • M. Reich
    • 2
  • F. Löer3
    • 3
  1. 1.Zentraleinrichtung für StrahlenschutzUniversität HannoverHannover 1Germany
  2. 2.Abteilung NuklearchemieUniversität zu KölnCologneGermany
  3. 3.Abteilung für Orthopädie, Rheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations