Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 116, Issue 4, pp 221–224 | Cite as

Prediction of pathological subtrochanteric fractures due to metastatic lesions

  • P. D. S. Dijkstra
  • M. Oudkerk
  • T. Wiggers
Original Article

Abstract

We report a radiographic review of 54 consecutive patients with 24 impending and 30 actual pathological fractures due to metastatic bone lesions in the subtrochanteric femoral region. In an attempt to develop criteria for metastatic lesions at risk of fracturing, the following variables based on anteroposterior and lateral X-rays were considered: appearance of the lesion, width of the lesion, ratio between width of the lesion and bone width, length of the lesion, length of cortex involvement, proportion of transverse cortical bone destroyed and local pain. Nearly all (99%) of the lesions were radiographically classified as lytic. In 27 cases (50%) they were radiographically unmeasurable. Maximal longitudinal cortical destruction showed a difference between patients with an actual or impending fracture. Prophylactic internal fixation of pathological subtrochanteric fractures due to metastatic lesions has to be considered in cases of increasing pain. If the conventional X-ray can not be evaluated, a computed tomography (CT) scan has to be considered.

Keywords

Public Health Compute Tomography Cortical Bone Internal Fixation Metastatic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beals RK, Lawton GD, Snell WE (1971) Prophylactic internal fixation of the femur in metastatic breast cancer. Cancer 28:1350–1354Google Scholar
  2. 2.
    Habermann ET, Sachs R, Stern RE, Kirsch DM, Anderson WG (1982) The pathology and treatment of metastatic disease of the femur. Clin Orthop 169:70–82Google Scholar
  3. 3.
    Albright JA, Gillspie TE, Butaud TR (1980) Treatment of bone metastases. Semin Oncol 7:418–434Google Scholar
  4. 4.
    Malawer M, Delaney TF (1989) Treatment of metastatic cancer of the bone. In: Devita VTJ (ed) Cancer: principles and practices of oncology. Lippincott, New York, pp 2298–2315Google Scholar
  5. 5.
    Zickel RE, Mouradian WH (1976) Intramedullary fixation of pathological fractures and lesions of the subrochanteric region of the femur. J Bone Joint Surg [Am] 58:1061–1066Google Scholar
  6. 6.
    Menck H, Schulze S, Larsen E (1988) Metastasis size in pathologic femoral fractures. Acta Orthop Scand 59:151–154Google Scholar
  7. 7.
    Yazawa Y, Frassica FJ, Chao EXS, Pritchard DJ, Sim FH, Shives TC (1990) Metastatic bone disease. Clin Orthop 251:213–219Google Scholar
  8. 8.
    Dijkstra PDS, Wiggers T, Geel AN van, Boxma H (1994) Treatment of impending and actual pathological fractures in patients with bone metastases of the long bones. Eur J Surg 160:535–542Google Scholar
  9. 9.
    Harrington KD (1982) New trends in the management of the lower extremity metastases. Clin Orthop 169:53–61Google Scholar
  10. 10.
    Fidler M (1973) Prophylactic internal fixation of secondary neoplastic deposits in long bones. B Med J 1:341–343Google Scholar
  11. 11.
    Keene JS, Sellinger SD, McBeath AA, Engber WD (1986) Metastatic breast cancer in the femur. Clin Orthop 203:282–288Google Scholar
  12. 12.
    Hipp JA, McBroom RJ, Cheal EJ, Hayes WC (1989) Structural consequences of endosteal metastatic lesions in long bones. J Orthop Res 7:828–837Google Scholar
  13. 13.
    Mirels H (1989) Metastatic disease in long bones: a proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop 14:513–525Google Scholar
  14. 14.
    Cheal EJ, Hipp JA, Hayes WC (1993) Evaluation of finite element analysis for prediction of the strength reduction due to metastatic lesions in the femoral neck. J Biomech 26:251–264Google Scholar
  15. 15.
    Bunting R, Lamont-Havers W, Schweon D, Kliman A (1985) Pathologic fracture risk in rehabilitation of patients with bony metastases. Clin Orthop 192:222–227Google Scholar
  16. 16.
    Griesmann H, Schüttemeyer W (1947) Weitere Erfahrungen mit der Marknagelung nach Küntscher an der Chirurgischen Universitätsklinik Kiel. Chirurg 17–18:316–333Google Scholar
  17. 17.
    Parrish FF, Murray JA (1970) Surgical treatment for secondary neoplastic fractures. A retrospective study of ninety-six patients. J Bone Joint Surg [Am] 52:665–686Google Scholar
  18. 18.
    Miller F, Whitehill R (1984) Carcinoma of the breast metastatic to the skeleton. Clin Orthop 184:121–127Google Scholar
  19. 19.
    Fidler M (1981) Incidence of fracture through metastases in long bones. Acta Orthop Scand 52:623–627Google Scholar
  20. 20.
    Bremner RA, Jelliffe AM (1958) The management of pathological fracture of the major long bones from metastatic cancer. J Bone Joint Surg [Br] 40:652Google Scholar
  21. 21.
    Frankel VH, Burstein AH (1965) Load capacity of tubular bone. In: Kenedi RM (ed) Biomechanics and related bio-engineering topics. Pergamonn Press, Oxford, pp 381–396Google Scholar
  22. 22.
    Clark CR, Morgan C, Sonstegard DA, Matthews LS (1977) The effect of biopsy hole shape and size on bone strength. J Bone Joint Surg [Am] 59:213–217Google Scholar
  23. 23.
    McBroom RJ, Cheal EJ, Hayes WC (1988) Strength reductions from metastatic cortical defects in long bones. J Orthop Res 6:369–378Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • P. D. S. Dijkstra
    • 1
  • M. Oudkerk
    • 2
  • T. Wiggers
    • 1
  1. 1.Department of Surgical Oncology, Dr. Daniel den Hoed Cancer CenterUniversity Hospital RotterdamRotterdamThe Netherlands
  2. 2.Department of Radiology, Dr. Daniel den Hoed Cancer CenterUniversity Hospital RotterdamThe Netherlands

Personalised recommendations