Antonie van Leeuwenhoek

, Volume 70, Issue 1, pp 1–10 | Cite as

DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip

  • J. T. Trevors


This review examines interactions between DNA and soil with an emphasis on the persistence and stability of DNA in soil. The role of DNA in genetic transformation in soil microorganisms will also be discussed. In addition, a postulated mechanism for stabilization and elongation/asserbly of primitive genetic material and the role of soil particles, salt concentrations, temperature cycling and crystal formation is examined.

Key words

adsorption clay DNA environment evolution genetic microchip interactions microorganisms nucleases soil stability transformation genetic microchip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aardema BW, Lorenz MG, & Krumbein WE (1983) Protection of sediment-adsorbed transforming DNA against enzymatic inactivation. Appl. Environ. Microbiol. 46: 417–420.Google Scholar
  2. Akkermans ADL, Van Elsas JD, De Bruijn FJ (1995) Molecular Microbial Ecology Manual, Kluwer Academic Publishers, Dordrecht, Th e NetherlandsGoogle Scholar
  3. Alef K, & Nannipieri P (Eds) (1995) Methods in Soil Microbiology and Biochemistry. Academic Press, New YorkGoogle Scholar
  4. Atlas RM, Bartha R (1993) Microbial Ecology, Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, USAGoogle Scholar
  5. Bakken LR & Olsen RA (1989) DNA-content of soil bacteria of diffenent cell size. Soil Biol. Biochem. 21: 789–793Google Scholar
  6. Bengston S (Ed) (1994) Early Life on Earth. Columbia University Press, New YorkGoogle Scholar
  7. Blackburn NT, Seech AG & Trevors JT (1995) Survival and transport of lux-lac marked Pseudomonas fluorescens strain in uncontaminated and chemically contaminated soils. System. Appl. Microbiol. 17: 574–580Google Scholar
  8. Cairns-Smith AG (1985) Seven Clues to the Origin of Life: A Sci entific Detective Story, Cambridge University Press, Cambridge, UKGoogle Scholar
  9. Cohen J (1995) Getting all turned around over the origins of life on earth. Science 267: 1265–1266Google Scholar
  10. Dai X, De Mesmaeker A, Joyce GF (1995) Cleavage of an amide bond by ribozyme. Science 267: 237–240Google Scholar
  11. DeFlaun MF, Paul JH, Jeffrey WH (1987) Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 38: 65–73Google Scholar
  12. Dijkmans R, Jagers A, Kreps S, Collard J-M, Mergeay M (1993) Rapid method for purification of soil DNA for hybridization and PCR analysis. Microb. Releases 2: 29–34Google Scholar
  13. England LS, Lee H, & Trevors JT (1995) Recombinant and wildtype Pseudomonas aureofaciens strains introduced into soil: effect on cellulose and straw decomposition. Mol. Ecol. 4: 221–230Google Scholar
  14. Flemming CA, Leung KT, Lee H, Trevors JT Greer C (1994) Survival of a lux-lac marked biosurfactant-producing Pseudomonas aeruginosa UG2 strain in soil: monitored by non-selective plating and PCR techniques. Appl. Environ. Microbiol. 60: 1606–1613Google Scholar
  15. Gauthier MJ (Ed) (1992) Gene Transfer and Environments, Springer-Verlag, Heidelberg, GermanyGoogle Scholar
  16. Garko KA, Stewart GJ (1994) The effect of divalent cations on the binding of DNA to marine sediment. Microb. Releases 2: 191–199Google Scholar
  17. Gesteland RF & Atkins JF (Eds) (1993) The RNA World, Col Spring Harbor Laboratory Press, Plainview, New York USAGoogle Scholar
  18. Graham JB & Istock CA (1978) Gene exchange in Bacillus subtilis in soil. Mol. Gen. Genet. 166: 287–290Google Scholar
  19. Greaves MP & Wilson MJ (1969) The adsorption of nucleic acids by montmorillonite. Soil Biol. Biochem. 1: 317–323Google Scholar
  20. Greaves MP & Wilson MJ (1970) The degradation of nucleic acids and montmorillonite-nucleic acid complexes by soil microorganisms. Soil Biol. Biochem. 2:257–268Google Scholar
  21. Holben WE, Jannsson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54: 703–711Google Scholar
  22. Jackman SC, Lee H, Trevors JT (1992) Survival, detection and cortainment of bacteria. Microb. Releases 1: 125–154Google Scholar
  23. Joyce GF, Orgel LE (1993) Prospects for understanding the origin of the RNA world. In: The RNA World (Eds Gesteland RF & Atkins JF) Cold Spring Harbor Laboratory Press, Plainview, New York USAGoogle Scholar
  24. Khanna M & Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58: 1930–1939Google Scholar
  25. Klug WS, Cummings MR (1993) Essentials of Genetics, Macmillan Publishing Company, New YorkGoogle Scholar
  26. Klug WS, Cummings MR (1994) Concpts of Genetics, Macmillan College Company, New YorkGoogle Scholar
  27. Koch AL (1994) Development and diversification of the last universal ancestor. J. theor. Biol. 168: 269–280Google Scholar
  28. Leung K, England LS, Weir S, Cassidy M & Trevors JT (1994) Microbial diversity in soil: effect of releasing genetically-engineered bacteria. Mol. Ecol. 3: 413–422Google Scholar
  29. Leung K, Trevors JT, Van Elsas JD (1995a) Extraction and amplification of DNA from the rhizosphere and rhizoplane of plants. In: Trevors JT, Van Elsas (Eds) Nucleic Acids in the Environment: Methods and Applications, Springer-Verlag, GermanyGoogle Scholar
  30. Leung K, Cassidy MB, Holmes SB, Lee H & Trevors JT (1995b) Survival of k-carrageenan-encapsulated and unencapsulated Pseudomonas aeruginosa UG2Lr cells in forest soil monitored by polymerase chain reaction and spread plating FEMS Microbiol. Ecol. 16: 71–82Google Scholar
  31. Levy SB & Miller RV (Eds) (1989) Gene Transfer in the Environment, McGraw-Hill, New YorkGoogle Scholar
  32. Lorenz MG, Aardema BW & Krumbein WE (1981) Interaction of marine sediment with DNA and DNA availability to nucleases. Mar. Biol. 64: 225–230Google Scholar
  33. Lorenz MG & Wackernagel W (1987) Adsorption of DNA to sand and variable degradation of adsorbed DNA. Appl. Environ. Microbiol. 53: 2948–2952Google Scholar
  34. Lorenz MG, Wackernagel W (1992) Stimulation of natural genetic transformation of Pseudomonas stutzeri in extracts of various soils by nitrogen or phosphorous limitation and influence of temperature and pH. Microb. Releases 1: 173–176Google Scholar
  35. Lorenz MG & Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563–602Google Scholar
  36. Lorenz MG, Aardema BW & Wackernagel W (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J. Gen. Microbiol. 134: 107–122Google Scholar
  37. Moore JA (1993) Science as way of Knowing. Harvard University Press, Cambridge, Massachusetts, USAGoogle Scholar
  38. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497–1500Google Scholar
  39. Ogram A, Sayler G, Gustin D & Lewis R (1988) DNA sorption to soils and sediments. Environ. Sci. Technol. 22: 982–984Google Scholar
  40. Ogram AV, Mathot ML, Harsh JB, Boyle J, Pettigrew Jr. CA (1994) Effects of DNA polymer length on its adsorption to soils. Appl. Environ. Microbiol. 60: 393–396Google Scholar
  41. Porter RD (1988) Modes of gene transfer in bacteria. In: Genetic Recombination (Eds. R. Kucherlapat & G.R. Smith) American Society Microbiology, Washington, USAGoogle Scholar
  42. Romanowski G, Lorenz MG & Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl. Environ. Microbiol. 57: 1057–1061Google Scholar
  43. Selenska S, Klingmuller W (1992) Direct recovery and molecular analysis of DNA from soil. Microb. Releases 1: 41–46Google Scholar
  44. Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, Van Elsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J. Appl. Bacteriol. 74: 78–85Google Scholar
  45. Steffan RJ, Goksoyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54: 2908–2915Google Scholar
  46. Stewart GJ & Carlson CA (1986) The biology of natural transformation. Ann. Rev. Microbiol. 40: 211–235Google Scholar
  47. Stotzky G & Babich H (1986) Survival of, and genetic transfer by, genetically engineered bacteria in natural environments. In: Adv. Appl. Microbiol. Vol 31, (Ed. A. I. Laskin), Academic Press, New York, pp 93–138Google Scholar
  48. Theng BKG (1979) formation and properties of clay-polymer complexes. Elsevier Science Publishing Co., AmsterdamGoogle Scholar
  49. Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol. Biochem. 10: 7–12Google Scholar
  50. Trevors JT (1988) Use of microcosms to study genetic interactions between microorganisms. Microbiol. Sci. 5: 132–136Google Scholar
  51. Trevors JT (1992) Extraction of DNA from soil Microbial Releases. 1: 3–9Google Scholar
  52. Trevors JT (1995) Molecular evolution in bacteria. Antonie van Leeuwenhoek. 67: 315–324Google Scholar
  53. Trevors JT & Van Elsas JD (Eds.) (1995) Nucleic Acids in the Environment: Methods and Applications, Springer-Verlag, Heidelberg, GermanyGoogle Scholar
  54. Trevors JT 1996. Nucleic acids in the environment. Current Opinion in Biotechnology. 7(3): (in press)Google Scholar
  55. Trevors JT & Van Elsas J D (1996) Quantification of gene transfer in soil and rhizosphere. In: Manual of Environmental Microbiology, American Society for Microbiology, ASM Press, Washington D.C. (in press)Google Scholar
  56. Trevors JT, Barkay T & Bourquin AW (1987) Gene transfer among bacteria in soil and aquatic environiments: a review. Can. J. Microbiol. 33: 191–198Google Scholar
  57. Trevors JT, Kuikman P & Watson R (1994) Interactions between transgenic plants and biogeochemical cycles. Mol. Ecol. 3: 57–64Google Scholar
  58. Tsai Y-L, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57: 1070–1074Google Scholar
  59. Turner DH, Bevilacqua PC (1993) Thermodynamic considerations for evolution by RNA. In. The RNA World (Eds Gesteland RF & Atkins JF) Cold Spring Harbor Laboratory Press, Plainview, New York, USAGoogle Scholar
  60. Van Elsas JD, Smit E (1995) Some considerations on gene transfer between bacteria in soil and rhizosphere. In: Molecular Ecology of Rhizosphere Microorganisms (Eds. F O'Gara, DN Dowling, B Boesten) (pp 151–164) VCH, Weinheim, GermanyGoogle Scholar
  61. Van Elsas JD & Trevors JT (1991) Environmental risks and fate of genetically engineered microorganisms in soil. J. Environ. Sci. Health A 26(6): 981–1001Google Scholar
  62. Wachtershauser G. (1988) Pyrite formation, the first energy source for life: a hypothesis. System. Appl. Microbiol. 10: 207–210Google Scholar
  63. Weinberg SR & Stotzky G (1972) Conjugation and genetic recombination of Escherichia coli in soil. Soil Biol. Biochem. 4: 171–180Google Scholar
  64. Wellington EMH & Van Elsas JD (1992) Gene transfer between microorganisms in the natural environment. Pergamon Press, LondonGoogle Scholar
  65. Woese C R (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. T. Trevors
    • 1
  1. 1.Laboratory of Microbial Technology Department of Environmental BiologyUniversity of GuelphGuelphCanada

Personalised recommendations