Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana

  • 121 Accesses

  • 114 Citations


A study was made of the day-night changes under controlled environmental conditions in the bulk-leaf water relations of Kalanchoë daigremontiana, a plant showing Crassulacean acid metabolism. In addition to nocturnal stomatal opening and net CO2 uptake, the leaves of well-watered plants showed high rates of gas exchange during the whole of the second part of the light period. Measurements with the pressure chamber showed that xylem tension increased during the night and then decreased towards a minimum at about midday; a significant increase in xylem tension was also seen in the late afternoon. Cell-sap osmotic pressure paralleled leaf malate content and was maximum at dawn and minimum at dusk. The relationship between these two variables indicated that the nocturnally synthesized malate was apparently behaving as an ideal osmoticum. To estimate bulk-leaf turgor pressure, values for water potential were derived by correcting the pressurechamber readings for the osmotic pressure of the xylem sap. This itself was found to depend on the malate content of the leaves. Bulk-leaf turgor pressure changed rhythmically during the day-night cycle; turgor was low during the late afternoon and for most of the night, but increased quickly to a maximum of 0.20 MPa around midday. In water-stressed plants, where net CO2 uptake was restricted to the dark period, there was also an increase in bulk-leaf turgor pressure at the start of the light period, but of reduced magnitude. Such changes in turgor pressure are likely to be of considerable ecological importance for the water economy of crassulacean-acid-metabolism plants growing in their natural habitats.

This is a preview of subscription content, log in to check access.



Crassulacean acid metabolism

P :

turgor pressure


osmotic pressure


water potential


  1. Bernstein, L. (1971) Method for determining solutes in the cell walls of leaves. Plant Physiol. 47, 361–365

  2. Boyer, J.S. (1967) Leaf water potentials measured with a pressure chamber. Plant Physiol. 42, 133–137

  3. Brunnhöfer, H., Schaub, H., Egle, K. (1968) Der Verlauf des CO2- und O2-Gaswechsels bei Bryophyllum daigremontianum in Abhängigkeit von der Temperatur. Z. Pflanzenphysiol. 59, 285–292

  4. Buchanan-Bollig, I.C., Smith, J.A.C. (1984) Circadian rhythms in crassulacean acid metabolism: phase relationships between gas exchange, leaf water relations and malate metabolism in Kalanchoë daigremontiana. Planta 161, 314–319

  5. Chen, S.-S., Black, C.C., Jr. (1983) Diurnal changes in volume and specific tissue weight of Crassulacean acid metabolism plants. Plant Physiol. 71, 373–378

  6. Cockburn, W., Ting, I.P., Sternberg, L.O. (1979) Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. Plant Physiol. 63, 1029–1032

  7. Cosgrove, D.J., Cleland, R.E. (1983) Solutesin the free space of growing stem tissues. Plant Physiol. 72, 326–331

  8. Dacey, J.W.H. (1981) Pressurized ventilation in the yellow waterlity. Ecology 62, 1137–1147

  9. Ellenberg, H. (1981) Ursachen des Vorkommens und Fehlens von Sukkulenten in den Trockengebieten der Erde. Flora 171, 114–169

  10. Gessner, F. (1956) Wasserspeicherung und Wasserverschiebung. In: Handbuch der Pflanzenphysiologie, vol. 3: Pflanze und Wasser, pp. 247–256, Ruhland, W., ed. Springer, Berlin Göttingen Heidelberg

  11. Gibson, A.C. (1982) The anatomy of succulence. In: Crassulacean acid metabolism, pp. 1–17, Ting, I.P., Gibbs, M., eds. American Society of Plant Physiologists, Rockville, Md.

  12. Hohorst, H.-J. (1970) L-(-)-Malat. Bestimmung mit Malat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, 2nd edn., vol. 2, pp. 1544–1548, Bergmeyer, H.U., ed. Verlag Chemie, Weinheim

  13. Kaplan, A., Gale, J., Poljakoff-Mayber, A. (1976) Resolution of net dark fixation of carbon dioxide into its respiration and gross fixation components in Bryophyllum daigremontianum. J. Exp. Bot. 27, 220–230

  14. Kenyon, W.H., Holaday, A.S., Black, C.C. (1981) Diurnal changes in metabolite levels and Crassulacean acid metabolism in Kalanchoë daigremontiana leaves. Plant Physiol. 68, 1002–1007

  15. Kluge, M., Böhlke, C., Queiroz, O. (1981) Crassulacean acid metabolism (CAM) in Kalanchoë: changes in intercellular CO2 concentration during a normal CAM cycle and during cycles in continuous light or darkness. Planta 152, 87–92

  16. Kluge, M., Fischer, K. (1967) Über Zusammenhänge zwischen dem CO2-Austausch und der Abgabe vom Wasserdampf durch Bryophyllum daigremontianum Berg. Planta 77, 212–223

  17. Kluge, M., Knapp, I., Kramer, D., Schwerdtner, I., Ritter, H. (1979) Crassulacean acid metabolism (CAM) in leaves of Aloë arborescens Mill. Comparative studies of the carbon metabolism of chlorenchym and central hydrenchym. Planta 145, 357–363

  18. Kluge, M., Ting, I.P. (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New York

  19. Lange, O.L., Zuber, M. (1980) Temperaturabhängigkeit des CO2-Gaswechsels stammsukkulenter Asclepiadaceen mit Säurestoffwechsel. Flora 170, 529–553

  20. Lüttge, U., Ball, E. (1977a) Water relation parameters of the CAM plant Kalanchoë daigremontiana in relation to diurnal malate oscillations. Oecologia (Berlin) 31, 85–94

  21. Lüttge, U., Ball, E. (1977b) Concentration and pH dependence of malate efflux and influx in leaf slices of CAM plants. Z. Pflanzenphysiol. 83, 43–54

  22. Lüttge, U., Ball, E. (1978) Free running oscillations of transpiration and CO2 exchange in CAM plants without a concomitant rhythm of malate levels. Z. Pflanzenphysiol. 90, 69–77

  23. Lüttge, U., Ball, E., Greenway, H. (1977) Effects of water and turgor potential on malate efflux from leaf slices of Kalanchoë daigremontiana. Plant Physiol. 60, 521–523

  24. Lüttge, U., Ball, E., Tromballa, H.-W. (1975) Potassium independence of osmoregulated oscillations of malate2- levels in the cells of CAM-leaves. Biochem. Physiol. Pflanz. 167, 267–283

  25. Lüttge, U., Nobel, P.S. (1984) Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus. Plant Physiol. 75, 804–807

  26. Lüttge, U., Smith, J.A.C. (1984) Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoë daigremontiana. J. Membr. Biol. 81, 149–158

  27. Lüttge, U., Smith, J.A.C., Marigo, G. (1982) Membrane transport, osmoregulation, and the control of CAM. In: Crassulacean acid metabolism, pp. 69–91, Ting, I.P., Gibbs, M., eds. American Society of Plant Physiologists, Rockville, Md.

  28. Lüttge, U., Smith, J.A.C., Marigo, G., Osmond, C.B. (1981) Energetics of malate accumulation in the vacuoles of Kalanchoë tubiflora cells. FEBS Lett. 126, 81–84

  29. Medina, E., Osmond, C.B. (1981) Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoë daigremontiana. Aust. J. Plant Physiol. 8, 641–649

  30. Nobel, P.S. (1983) Biophysical plant physiology and ecology. Freeman, San Francisco

  31. Nobel, P.S., Jordan, P.W. (1983) Transpiration stream of desert species: resistances and capacitances for a C3, a C4, and a CAM plant. J. Exp. Bot. 34, 1379–1391

  32. Osmond, C.B. (1978) Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29, 379–414

  33. Passioura, J.B. (1982) Water in the soil-plant-atmosphere continuum. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II: Water relations and carbon assimilation, pp. 5–33, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New York

  34. Schimper, A.F.W. (1935) Pflanzengeographie auf physiologischer Grundlage, 3rd edn., Faber, F.C. von, ed. Fischer, Jena

  35. Schnellbächer, E. (1982) Wasserfluß in Blättern von CAM-Pflanzen. Diplomarbeit, Technische Hochschule Darmstadt

  36. Scholander, P.F., Bradstreet, E.D., Hammel, H.T., Hemmingsen, E.A. (1966) Sap concentrations in halophytes and some other plants. Plant Physiol. 41, 529–532

  37. Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A. (1965) Sap pressure in vascular plants. Science 148, 339–346

  38. Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., Bradstreet, E.D. (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc. Natl. Acad. Sci. USA 52, 119–125

  39. Shackel, K.A., Hall, A.E. (1983) Comparison of water relations and osmotic adjustment in sorghum and cowpea under field conditions. Aust. J. Plant Physiol. 10, 423–435

  40. Smith, J.A.C. (1984) Water relations in CAM plants. In: Physiological ecology of CAM plants, pp. 30–51, Medina, E., ed. International Center for Tropical Ecology (Unesco-IVIC), Caracas, Venezuela

  41. Smith, J.A.C., Heuer, S. (1981) Determination of the volume of intercellular spaces in leaves and some values for CAM plants. Ann. Bot. (London) 48, 915–917

  42. Smith, J.A.C., Steudle, E., Lüttge, U. (1984) Day-night changes in cell turgor pressure during crassulacean acid metabolism (CAM) measured with the pressure probe. In: Membrane transport in plants, pp. 119–120, Cram, W.J., Janáček, K., Rybová, R., Sigler, K., eds. Academia, Praha

  43. Spalding, M.H., Stumpf, D.K., Ku, M.S.B., Burris, R.H., Edwards, G.E. (1979) Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC. Aust. J. Plant Physiol. 6, 557–567

  44. Steudle, E., Smith, J.A.C., Lüttge, U. (1980) Water-relation parameters of individual mesophyll cells of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Plant Physiol. 66, 1155–1163

  45. Troll, C. (1956) Das Wasser als pflanzengeographischer Faktor. In: Handbuch der Pflanzenphysiologie, vol. 3: Pflanze und Wasser, pp. 750–786, Ruhland, W., ed. Springer, Berlin Göttingen Heidelberg

  46. Turner, N.C., Begg, J.E., Rawson, H.M., English, S.D., Hearn, A.B. (1978) Agronomic and physiological responses of soybean and sorghum crops to water deficits. III. Components of leaf water potential, leaf conductance, 14CO2 photosynthesis, and adaptation to water deficits. Aust. J. Plant Physiol. 5, 179–194

  47. Turner, N.C., Long, M.J. (1980) Errors arising from rapid water loss in the measurement of leaf water potential by the pressure chamber technique. Aust. J. Plant Physiol. 7, 527–537

  48. Tyree, M.T., Hammel, H.T. (1972) The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exp. Bot. 23, 267–282

  49. Tyree, M.T., Jarvis, P.G. (1982) Water in tissues and cells. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II: Water relations and carbon assimilation, pp. 35–77, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New York

  50. Walter, H. (1960) Einführung in die Phytologie, vol. 3: Grundlagen der Pflanzenverbreitung, pt. 1: Standortslehre (analytisch-ökologische Geobotanik), 2nd edn. Ulmer, Stuttgart

  51. Walter, H. (1973) Die Vegetation der Erde in öko-physiologischer Betrachtung, vol. 1: Die tropischen und subtropischen Zonen, 3rd edn., Fischer, Jena

  52. Zimmermann, U., Steudle, E. (1978) Physical aspects of water relations of plant cells. Adv. Bot. Res. 6, 45–117

Download references

Author information

Additional information

Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, J.A.C., Lüttge, U. Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana . Planta 163, 272–282 (1985). https://doi.org/10.1007/BF00393518

Download citation

Key words

  • Crassulacean acid metabolism
  • Kalanchoë (water relations)
  • Leaf water relations
  • Osmotic pressure
  • Turgor pressure
  • Water potential