Planta

, Volume 163, Issue 2, pp 191–196 | Cite as

Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flowers of Matthiola incana R. Br.

  • Werner Heller
  • Lothar Britsch
  • Gert Forkmann
  • Hans Grisebach
Article

Abstract

(+)Leucopelargonidin [(2R,3S,4R)-3,4,5,7,4′-pentahydroxyflavan] and (+)leucocyanidin [(2R,3S,4R)-3,4,5,7,3′,4′-hexahydroxyflavan] were synthesized from (+)dihydrokaempferol and (+)dihydroquercetin, respectively, by sodium-borohydride reduction. The chemical and optical purity of these compounds was established by ultraviolet, proton-nuclear-magnetic-resonance, and optical-rotatory-dispersion spectroscopy. Supplementation experiments with these leucoanthocyanidins were carried out with genetically defined acyanic flowers of Matthiola incana. Feeding of leucopelargonidin and leucocyanidin to line 17 (blocked between dihydroflavonols and anthocyanins) and line 18 (blocked in the chalcone-synthase gene) led to formation of the corresponding anthocyanidin 3-O-glucosides, whereas supplementation of line 19 (blocked in a locus other than line 17 between dihydroflavonols and anthocyanins) did not result in anthocyanin synthesis. The conversion of leucopelargonidin into pelargonidin 3-O-glucoside was further confirmed by incorporation of [4-3H]leucopelargonidin into pelargonidin derivatives. The results are strong indications for the role of leucoanthocyanidins (flavan-3,4-diols) as intermediates in anthocyanin biosynthesis.

Key words

Anthocyanin (biosynthesis) Flavan-3,4-diol leucoanthocyanidin Matthiola (anthocyanin biosynthesis) 

Abbreviations

1H-NMR

proton nuclear magnetic resonance

ORD

optical rotatory dispersion

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, G.M. (1968) Detection of 3-hydroxyflavanones on papergrams and on thin-layer plates. J. Chromatogr. 34, 562PubMedGoogle Scholar
  2. Botha, J.J., Young, D.A., Ferreira, D., Roux, D.G. (1981) Synthesis of condensed tannins, pt. 1: Stereoselective and stereospecific syntheses of optically pure 4-arylflavan-3-ols, and assessment of their absolute stereochemistry at C-4 by means of circular dichroism. J. Chem. Soc. Perkin Trans. 1, 1213–1219Google Scholar
  3. Bopp, M., Matthiss, B. (1962) Über den Zusammenhang der Biogenese von Anthocyan and Leukoanthocyan. Z. Naturforsch. Teil B 17, 811–818Google Scholar
  4. Britsch, L., Heller, W., Grisebach, H. (1981) Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley. Z. Naturforsch. Teil C 36, 742–750Google Scholar
  5. Creasy, L.L., Swain, T. (1965) Structure of condensed tannins. Nature 208, 151–153PubMedGoogle Scholar
  6. Forkmann, G. (1977) Precursors and genetic control of anthocyanin synthesis in Matthiola incana R. Br. Planta 137, 159–163Google Scholar
  7. Forkmann, G., Heller, W., Grisebach, H. (1980) Anthocyanin biosynthesis in flowers of Matthiola incana. Flavanone 3-and flavonoid 3′-hydroxylases. Z. Naturforsch. Teil C 35, 691–695Google Scholar
  8. Forkmann, G., Stotz, G. (1981) Genetic control of flavanone 3-hydroxylase activity and flavonoid 3′-hydroxylase activity in Antirrhinum majus (snapdragon). Z. Naturforsch. Teil C 36, 411–416Google Scholar
  9. Gaffield, W. (1970) Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides. Tetrahedron 26, 4093–4108Google Scholar
  10. Grisebach, H. (1982) Biosynthesis of anthocyanins. In: Anthocyanins as food colours, pp. 69–92, Markakis, P., ed. Academic Press, New York LondonGoogle Scholar
  11. Hagmann, M.L., Heller, W., Grisebach, H. (1983) Induction and characterization of a microsomal flavonoid 3′-hydroxylase from parsley cell cultures. Eur. J. Biochem. 134, 547–554PubMedGoogle Scholar
  12. Haslam, E. (1975) Natural proanthocyanidins. In: The flavonoids, pp. 505–559, Harborne, J.B., Mabry, T.J., Mabry, H., eds. Chapman and Hall, LondonGoogle Scholar
  13. Haslam, E. (1982) Proanthocyanidins. In: The flavonoids, advances in research, pp. 417–446, Harbone, J.B., Mabry, T.J., eds. Chapman and Hall, LondonGoogle Scholar
  14. Kho, K.F.F., Bolsman-Louwen, A.C., Vuik, J.C., Bennink, G.J.H. (1977) Anthocyanin synthesis in a white flowering mutant of Petunia hybrida. II. Accumulation of dihydroflavonol intermediates in white flowering mutants. Uptake of intermediates in isolated corollas and conversion into anthocyanins. Planta 135, 109–118Google Scholar
  15. Markham, K.R., Mabry, T.J. (1968) The structure and stereochemistry of two new dihydroflavonol glycosides. Tetrahedron 24, 823–827Google Scholar
  16. Porter, L.J., Foo, L.Y. (1982) Leucocyanidin: synthesis and properties of (2R,3S,4R)-(+)-3,4,5,7,3′,4′-hexahydroxyflavan. Phytochemistry 21, 2947–2952Google Scholar
  17. Seyffert, W. (1960) Wirkung von Blütenfarbengenen bei der Levkoje, Matthiola incana R. Br. Z. Pflanzenzücht. 44, 4–29Google Scholar
  18. Spribille, R., Forkmann, G. (1981) Genetic control of chalcone synthase activity in flowers of Matthiola incana R. Z. Naturforsch. Teil C 36, 619–624Google Scholar
  19. Stafford, H.A. (1983) Enzymic regulation of procyanidin biosynthesis; lack of a flav-3-en-3-ol intermediate. Phytochemistry 22, 2643–2646Google Scholar
  20. Stafford, H.A., Lester, H.H. (1982) Enzymic and nonenzymic reduction of (+)-dihydroquercetin to its 3,4-diol. Plant Physiol. 70, 695–698Google Scholar
  21. Stafford, H.A., Lester, H.H. (1984) Flavan-3-ol biosynthesis: the conversion of (+)-dihydroquercetin and flavan-3,4-cisdiol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension cultures of Douglas fir. Plant Physiol. 76, 184–186Google Scholar
  22. Weinges, K., Bähr, W., Ebert, W., Göritz, K., Marx, H.D. (1969) Konstitution und Bedeutung der Flavonoid-Gerbstoffe. Fortschr. Chem. Org. Naturst. 27, 158–260Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Werner Heller
    • 1
  • Lothar Britsch
    • 1
  • Gert Forkmann
    • 2
  • Hans Grisebach
    • 1
  1. 1.Biologisches Institut II der UniversitätFreiburg
  2. 2.Institut für Biologie II der UniversitätTübingenGermany

Personalised recommendations