, Volume 163, Issue 2, pp 183–190 | Cite as

Immunochemical localization of phenylalanine ammonia-lyase and chalcone synthase in anthers

  • B. Kehrel
  • R. Wiermann


Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) from anthers of the garden tulip “Apeldoorn” have been purified to apparent homogeneity as revealed by sodium dodecyl sulfate disc-gel electrophoresis. Phenylalanine ammonia-lyase was either purified by successive chromatography on Sephacryl S 300 Superfine, HA Ultrogel and on diethylaminoethyl Sephacel or by immunoaffinity chromatography in a single step. Purification of CHS was achieved by chromatography on Sephadex G 200 and on HA Ultrogel followed by chromatofocusing. The purified enzymes were used for the immunization of rabbits. The specificity of the antisera against both PAL and CHS was tested by diverse methods. Antisera against PAL and CHS were employed to detect the localization of the enzymes in cross sections of tulip anthers using an indirect immunofluorometric method. The results show that PAL and CHS are located predominantly in the tapetum cells. These observations strengthen the view that the tapetum plays an important role in the regulation of phenylpropanoid metabolism within the loculus of anthers.

Key words

Anther Chalcone synthase Phenylalanine ammonia-lyase Tulipa 



chalcone synthase


phenylalanine ammonia-lyase


sodium dodecyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrhein, N., Zenk, M.H. (1971) Untersuchungen zur Rolle der Phenylalanin-Ammonium-Lyase (PAL) bei der Regulation der Flavonoidsynthese im Buchweizen. Z. Pflanzenphysiol. 64, 145–168Google Scholar
  2. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254CrossRefPubMedGoogle Scholar
  3. Burmeister, G., Hösel, W. (1981) Immunohistochemical localization of β-glucosicases in lignin and isoflavone metabolism in Cicer arietinum L. seedlings. Planta 152, 578–586Google Scholar
  4. Carnegie, J.A., McCully, M.E., Robertson, H.A. (1980) Embedment in glycol methacrylate at low temperature allows immunofluorescent localization of a labile tissue protein. J. Histochem. Cytochem. 28, 308–310PubMedGoogle Scholar
  5. Harboe, N., Ingild, A. (1973) A manual of quantitative immun-electrophoresis, vol. 1, Suppl. 2, Chap. 23. Universitetforlaget, OsloGoogle Scholar
  6. Hattersley, P.W., Watson, L., Osmond, C.B. (1977) In situ immunofluorescent labelling of ribulose-1,5-bisphosphate carboxylase in leaves of C3 and C4 plants. Aust. J. Plant Physiol. 4, 523–529Google Scholar
  7. Havir, E.A., Hanson, K.R. (1973) l-phenylalanine ammonialyase (maize and potato). Evidence that enzyme is composed of four subunits. Biochemistry 12, 1583–1591PubMedGoogle Scholar
  8. Heller, W., Hahlbrock, K. (1980) Highly purified “Flavanone synthase” from parsley catalyzes the formation of naringenin chalcone. Arch. Biochem. Biophys. 200, 617–619PubMedGoogle Scholar
  9. Herdt, E., Sütfeld, R., Wiermann, R. (1978) The occurrence of enzymes involved in phenylpropanoid metabolism in the tapetum fraction of anthers. Cytobiologie Z. Exp. Zellforsch. 17, 433–441Google Scholar
  10. Heslop-Harrison, J. (1975) The physiology of the pollen grain surface. Proc. R. Soc. London Ser. 190, 275–299Google Scholar
  11. Hirel, B., Perrot-Rechenmann, C., Suzuki, A., Vidal, J., Gadal, P. (1982) Glutamine synthetase in spinach leaves. Immunological studies and immunocytochemical localization. Plant Physiol. 69, 983–987Google Scholar
  12. Hudson, L., Hay, F.C. (1980) Practical immunology, 2nd edn. Blackwell, OxfordGoogle Scholar
  13. Hughes, H.P.A., Lee, D.L., Balfour, A.H. (1980) A multiple staining technique for agarose gels. Sci. Tools 27, 39–41Google Scholar
  14. Kehrel, B., Rittscher, M., Wiermann, R. (1982) The distribution of phenylalanine ammonia-lyase (PAL) and chalcone synthase in anthers—the role of the tapetum in phenylpropanoid metabolism in the loculus of anthers. In: Bulletin de Liaison No. 11 du Groupe Polyphenols. C. R. des Journées Internationales D'études et assemblées générales, pp. 84–94, Boudet, A.M., Ranjeva, R., eds.Google Scholar
  15. Kleinhollenhorst, G., Behrens, H., Pegels, G., Strunk, N., Wiermann, R. (1982) Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzmye extracts from anthers of Tulipa cv. “Apeldoorn”. Z. Naturforsch. Teil C 37, 587–599Google Scholar
  16. Kreuzaler, F., Ragg, H., Heller, W., Tesch, R., Witt, I., Hammer, D., Hahlbrock, K. (1979) Flavanone synthase from Petroselinum hortense. Molecular weight, subunit composition, size of messenger RNA, and absence of plantetheinyl residue. Eur. J. Biochem. 99, 89–96PubMedGoogle Scholar
  17. Layne, E. (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Protein estimation by ultraviolet absorption. Methods Enzymol. 3, 451–454Google Scholar
  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randal, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275PubMedGoogle Scholar
  19. Maizel, J.V. (1971) Polyacrylamide gelelectrophoresis of viral proteins. In: Methods in virology, vol. 5, pp. 179–247, Maramorosch, K., Koprowski, H., eds. Academic Press, New York LondonGoogle Scholar
  20. Marcinowski, S., Falk, H., hammer, D.K., Hoyer, B., Grisebach, H. (1979) Appearance and localization of a β-glucosidase hydrolyzing coniferin in spruce (Piea abies) seedlings. Planta 144, 161–165Google Scholar
  21. Noé, W., Seitz, H.U. (1982) Induction of de novo synthesis of phenylalanine ammonia-lyase by l-α-aminooxy-β-phenylpropionic acid in suspension cultures of Daucus carota L. Planta 154, 454–458Google Scholar
  22. Rittscher, M., Wiermann, R. (1983) Occurrence of phenylalanine ammonia-lyase (PAL) in isolated tapetum cells of tulip anthers. Protoplasma 118, 219–224Google Scholar
  23. Saleh, N.A.M., Fritsch, H.J., Kreuzaler, F., Grisebach, H. (1978) Flavanone synthase from cell suspension cultures of Haplopappus gracilis and comparison with the synthase from parsley. Phytochemistry 17, 183–186Google Scholar
  24. Sauter, J.J. (1969) Autoradiographische Untersuchungen zur RNS- und Proteinsynthese in Pollenmutterzellen, jungen Pollen und Tapetumzellen während der Mikrosporogenese von Paeonia tenuifolia L. Z. Pflanzenphysiol. 61, 1–19Google Scholar
  25. Schächtele, K.H., Schiltz, E., Palm, D. (1978) Aminoacid sequence of the Pyridoxal-phosphate-binding site in Escherichia coli maltodextrin phosphorylase. Eur. J. Biochem. 92, 427–435PubMedGoogle Scholar
  26. Schmid, G., Hammer, D.K., Ritterbusch, A., Grisebach, H. (1982) Appearance and immunohistochemical localization of UDP-glucose: coniferyl alcohol glucosyl-transferase in spruce (Picea abies (L.) Karst.) seedlings. Planta 156, 207–212Google Scholar
  27. Schneider, E.M., Becker, J.U., Volkmann, D. (1981) Biochemical properties of potato phosphorylase change with its intracellular localization as revealed by immunological methods. Planta 151, 124–134Google Scholar
  28. Stanley, R.G., Linskens, H.F. (1974) Pollen (biology, biochemistry, management). Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. Strack, D., Meurer, B., Wray, V., Grotjan, L., Austenfeld, F., Wiermann, R. (1984) A quercetin glycoside from pollen of Corylus avellana. Phytochemistry (in press)Google Scholar
  30. Strack, D., Sachs, G., Wiermann, R. (1981) Pollen of Tulipa cv. Apeldoorn as an accumulation site of flavonol di- and triglycosides. Z. Pflanzenphysiol. 103, 291–296Google Scholar
  31. Sütfeld, R., Kehrel, B., Wiermann, R. (1978) Characterization, development and localization of “flavanone synthase” in tulip anthers. Z. Naturforsch. Teil C 33, 841–846Google Scholar
  32. Sütfeld, R., Wiermann, R. (1981) Purification of chalcone synthase from tulip anthers and comparison with the synthase from Cosmos petals. Z. Naturforsch. Teil C 36, 30–34Google Scholar
  33. Weeke, B. (1973) Rocket immunoelectrophoresis. Scand. J. Immunol. 2, Suppl. 1, 37PubMedGoogle Scholar
  34. Wiermann, R. (1981) Secondary plant products and cell and tissue differentiation In: The biochemistry of plants. A comprehensive treatise, vol. 7: Secondary plant products, pp. 86–116, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York London Toronto Sydney San FranciscoGoogle Scholar
  35. Wiermann, R., Vieth, K. (1983) Outer pollen wall, an important accumulation site for flavonoids. Protoplasma 118, 230–233Google Scholar
  36. Zimmermann, A., Hahlbrock, K. (1975) Light-induced changes of enzyme activities in parsley cell suspension cultures-purification and some properties of PAL. Arch. Biochem. Biophys. 166, 54–62PubMedGoogle Scholar
  37. Zwilling, R. (1977) Immunologisches Praktikum. Fischer, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • B. Kehrel
    • 1
  • R. Wiermann
    • 1
  1. 1.Botanisches Institut der UniversitätMünster (Westfalen)Germany

Personalised recommendations