, Volume 162, Issue 5, pp 404–414 | Cite as

A role of microtubules in the polarity of statocytes from roots of Lepidium sativum L.

  • W. Hensel


When roots of Lepidium sativum L. are immersed in a colchicine solution (10-4 mol l-1), the cortical microtubules of statocytes are affected such that the dense network ofmicrotubules at the distal cell edges, between the endoplasmic reticulum and the plasma membrane, disappears almost completely, whereas the microtubules, lining the anticlinal cell walls are reduced only to a limited extent. Upon inversion of colchicine-pretreated roots, the distal complex of endoplasmic reticulum sinks into the interior of the statocyte. Germination of seeds in the cold (3–4°C) leads to a retardation of statocyte development; the elaborated system of endoplasmic reticulum is lacking, and only a few microtubules are observable, lining the plasma membrane along the anticlinal cell walls. During an additional 4 h at 24°C, groups of microtubules develop near the plasma membrane in the distal one-third of the statocytes, coaligning with newly synthesized cisternae of the endoplasmic reticulum. It is proposed that, particularly at the distal statocyte pole, microtubules in coordination with cross-bridging structures, act in stabilizing the polar arrangement of the distal endoplasmic reticulum and, in turn, facilitate an integrated function of amyloplasts, endoplasmic reticulum and plasma membrane in graviperception.

Key words

Lepidium Microtubule (cell polarity) Polarity Root (statocytes, polarity) Statocyte polarity 



endoplasmic reticulum




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, D.L., Stearns, M.E., Macrae, T.H. (1982) Microtubule organizing centres. In: The cytoskeleton in plant growth and development, pp. 55–83, Lloyd, C.W., ed. Academic Press, LondonGoogle Scholar
  2. Buckhout, T.J. (1983) ATP-dependent Ca2+ transport in endoplasmic reticulum isolated from roots of Lepidium sativum L. Planta 159, 84–90Google Scholar
  3. Burgess, J., Northcote, D.H. (1968) The relationship between the endoplasmic reticulum and microtubular aggregation and disaggregation. Planta 80, 1–14Google Scholar
  4. Busby, C.H., Gunning, B.E.S. (1983) Orientation of microtubules against transverse cell walls in roots of Azolla pinnata R. Br. Protoplasma 116, 78–85Google Scholar
  5. Cox, G., Juniper, B.E. (1983) High-voltage electron microscopy of whole, critical-point dried plant cells—fine cytoskeletal elements in the moss Bryum tenuisetum. Protoplasma 115, 70–80Google Scholar
  6. Dustin, P. (1978) Microtubules. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Franke, W.W. (1971a) Relationship of nuclear membranes with filaments and microtubules. Protoplasma 73, 263–292Google Scholar
  8. Franke, W.W. (1971b) Cytoplasmic microtubules linked to endoplasmic reticulum with cross-bridges. Exp. Cell Res. 66, 486–489Google Scholar
  9. Galatis, B. (1977) Differentiation of stomatal meristemoids and guard mother cells into guard-like cells in Vigna sinensis leaves after colchicine treatment. Planta 136, 103–114Google Scholar
  10. Galatis, B. (1980) Microtubules and guard-cell morphogenesis in Zea mays L. J. Cell Sci. 45, 211–244Google Scholar
  11. Galatis, B. (1982) The organization of microtubules in guard cell mother cells of Zea mays. Can. J. Bot. 60, 1148–1166Google Scholar
  12. Galatis, B., Apostolakos, P., Katsaros, C. (1983) Microtubules and their organizing centres in differentiating guard cells of Adiantum capillus veneris. Protoplasma 115, 176–192Google Scholar
  13. Gunning, B.E.S. (1980) Spatial and temporal regulation of nucleating sites for arrays of cortical microtubules in root tip cells of the water fern Azolla pinnata. Eur. J. Cell Biol. 23, 53–65Google Scholar
  14. Gunning, B.E.S. (1981) Microtubules and cytomorphogenesis in a developing organ: the root primordium of Azolla pinnata. In: Cell biology monographs, vol. 8: Cytomorphogenesis in plants, pp. 301–325, Kiermayer, O., ed. Springer, Wien New YorkGoogle Scholar
  15. Gunning, B.E.S., Hardham, A.R. (1982) Microtubules. Annu. Rev. Plant Physiol. 33, 651–698Google Scholar
  16. Gunning, B.E.S., Hardham, A.R., Hughes, J.E. (1978) Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root-tip cells, and an hypothesis on the development of cortical arrays of microtubules. Planta 143, 161–179Google Scholar
  17. Hardham, A.R. (1982) Regulation of polarity in tissues and organs. In: The cytoskeleton in plant growth and development, pp. 377–403, Lloyd, C.W., ed. Academic Press, LondonGoogle Scholar
  18. Hardham, A.R., Gunning, B.E.S. (1978) Structure of cortical microtubule arrays in plant cells. J. Cell Biol. 77, 14–34Google Scholar
  19. Hardham, A.R., Gunning, B.E.S. (1979) Interpolation of microtubules into cortical arrays during cell elongation and differentiation in roots of Azolla pinnata. J. Cell Sci 37, 411–442Google Scholar
  20. Harris, P. (1975) The role of membranes in the organization of the mitotic apparatus. Exp. Cell Res. 94, 409–425Google Scholar
  21. Heath, I.B. (1975) The effect of antimicrotubule agents on the growth and ultrastructure of the fungus Saprolegnia ferax and their ineffectiveness in disrupting hyphal microtubules. Protoplasma 85, 147–176Google Scholar
  22. Heath, I.B., Heath, M.C. (1978) Microtubules and organelle movements in the rust fungus Uromyces phaseoli var. vignae. Cytobiologie 16, 393–411Google Scholar
  23. Hensel, W. (1984) Microtubules in statocytes from roots of cress (Lepidium sativum L.). Protoplasma 119, 121–134Google Scholar
  24. Hensel, W., Sievers, A. (1981) Induction of gravity-dependent plasmatic responses in root statocytes by short time contact between amyloplasts and the distal endoplasmic reticulum complex. Planta 153, 303–307Google Scholar
  25. Hepler, P.K. (1980) Membranes in the mitotic apparatus of barley cells. J. Cell Biol 86, 490–499Google Scholar
  26. Hepler, P.K. (1981) Morphogenesis of tracheary elements and guard cells. In: Cell biology monographs, vol. 8: Cytomorphogenesis in plants, pp. 327–347, Kiermayer, O., ed. Springer, Wien New YorkGoogle Scholar
  27. Hillmann, G., Ruthmann, A. (1982) Effect of mitotic inhibitors on the ultrastructure of root meristem cells. Planta 155, 124–132Google Scholar
  28. Kirschner, M.W. (1978) Microtubule assembly and nucleation. Int. Rev. Cytol. 54, 1–71Google Scholar
  29. Kristen, U. (1978) Ultrastructure and a possible function of the intercisternal elements in dictyosomes. Planta 138, 29–33Google Scholar
  30. Lloyd, C.W., ed. (1982) The cytoskeleton in plant growth and development. Academic Press, LondonGoogle Scholar
  31. Mandelkow, E., Mandelkow, E.M., Bordas, J. (1983) Synchrotron radiation as a tool for studying microtubule self-assembly. Trends Biochem. Sci. 8, 374–377Google Scholar
  32. Melkonian, M., Kröger, K.-H., Marquardt, K.G. (1980) Cell shape and microtubules in zoospores of the green alga Chlorosarcinopsis gelatinose (Chlorosarcinales): effects of low temperature. Protoplasma 104, 283–293Google Scholar
  33. Mollenhauer, H.H. (1965) An intercisternal structure in the golgi apparatus. J. Cell Biol 24, 504–511Google Scholar
  34. Mollenhauer, H.H., Morré, D.J. (1975) A possible role for intercisternal elements in the formation of secretory vesicles in plant golgi apparatus. J. Cell Sci 19, 231–237Google Scholar
  35. Palevitz, B.A. (1981) Microtubules and possible microtubule nucleation centers in the cortex of stomatal cells as visualized by high voltage electron microscopy. Protoplasma 107, 115–125Google Scholar
  36. Palevitz, B.A. (1982) The stomatal complex as a model of cytoskeletal participation in cell differentiation. In: The cytoskeleton in plant growth and development, pp. 345–376, Lloyd, C.W., ed. Academic Press, LondonGoogle Scholar
  37. Plattner, H., Westphal, C., tiggemann, R. (1982) Cytoskeleton-secretory vesicle interactions during the docking of secretory vesicles at the cell membrane in Paramecium tetraurelia cells. J. Cell Biol. 92, 368–377Google Scholar
  38. Quatrano, R.S. (1978) Development of cell polarity. Annu. Rev. Plant Physiol. 29, 487–510Google Scholar
  39. Robinson, D.G. (1977) Structure, synthesis and orientation of microfibrils. IV. Microtubules and microfibrils in Glaucocystis. Cytobiologie 15, 475–484Google Scholar
  40. Robinson, D.G., Herzog, W. (1977) Structure, synthesis and orientation of microfibrils. III. A survey of the action of microtubule inhibitors on microtubules and microfibril orientation in Oocystis solitaria. Cytobiologie 15, 463–474Google Scholar
  41. Schmiedel, G., Reiss, H.-D., Schnepf, E. (1981) Associations between membranes and microtubules during mitosis and cytokinesis in caulonema tip cells of the moss Funaria hygrometrica. Protoplasma 108, 173–190Google Scholar
  42. Schmiedel, G., Schnepf, E. (1979) Side branch formation and orientation in the caulonema of the moss, Funaria hygrometrica: experiments with inhibitors and centrifugation. Protoplasma 101, 47–59Google Scholar
  43. Schmiedel, G., Schnepf, E. (1980) Polarity and growth of caulonema tip cells of the moss Funaria hygrometrica. Planta 147, 405–413Google Scholar
  44. Schnepf, E. (1981) Polarity and gradients in tip growing plant cells. In: International cell biology 1980–1981, pp. 485–488, Schweiger, H.G., ed. Springer, Berlin Heidelberg New YorkGoogle Scholar
  45. Schnepf, E. (1982) Morphogenesis in moss protonemata. In: The cytoskeleton in plant growth and development, pp. 321–344, Lloyd, C.W., ed. Academic Press, LondonGoogle Scholar
  46. Schnepf, E. (1984) Pre- and postmitotic reorientation of microtubule arrays in young Sphagnum leaflets: transitional stages and initiation sites. Protoplasma 120, 100–112Google Scholar
  47. Schnepf, E., Hrdina, B., Lehne, A. (1982) Spore germination, development of the microtubule system and protonema cell morphogenesis in the moss, Funaria hygrometrica: effects of inhibitors and growth substances. Biochem. Physiol. Pflanz. 177, 461–482Google Scholar
  48. Seagull, R.W., Heath, I.B. (1979) The effect of tannic acid on the in vivo preservation of microfilaments. Eur. J. Cell Biol. 20, 184–188Google Scholar
  49. Seagull, R.W., Heath, I.B. (1980) The organization of cortical microtubule arrays in the radish root hair. Protoplasma 103, 205–229Google Scholar
  50. Sievers, A., Behrens, H.M., Buckhout, T.J., Gradmann, D. (1984) Can a Ca2+ pump in the endoplasmic reticulum of the Lepidium root be the trigger for rapid changes in membrane potential after gravistimulation? Z. Pflanzenphysiol. 114, 195–200Google Scholar
  51. Sievers, A., Hensel, W. (1982) The nature of graviperception. In: Plant growth substances 1982, pp. 497–506, Wareing, P.F., ed. Academic Press, LondonGoogle Scholar
  52. Sievers, A., Schnepf, E. (1981) Morphogenesis and polarity of tubular cells with tip growth. In: Cell biology monographs, vol. 8: Cytomorphogenesis in plants. pp. 265–299, Kiermayer, O., ed. Springer, Wien New YorkGoogle Scholar
  53. Sievers, A., Volkmann, D. (1972) Verursacht differentieller Druck der Amyloplasten auf ein komplexes Endomembransystem die Geoperzeption in Wurzeln? Planta 102, 160–172Google Scholar
  54. Sievers, A., Volkmann, D., Hensel, W., Sobick, V., Briegleb, W. (1976) Cell polarity in root statocytes in spite of simulated weightlessness. Naturwissenschaften 63, 343Google Scholar
  55. Traas, J.A. (1984) Visualization of the membrane bound cytoskeleton and coated pits of plant cells by means of dry cleaving. Protoplasma 119, 212–218Google Scholar
  56. Volkmann, D. (1981) Structural differentiation of membranes involved in the secretion of polysaccharide slime by root cap cells of cress (Lepidium sativum L.). Planta 151, 180–188Google Scholar
  57. Volkmann, D., Sievers, A. (1975) Wirkung der inversion auf die Anordnung des Endoplasmatischen Reticulums und die Polarität von Statocyten in Wurzeln von Lepidium sativum. Planta 127, 11–19Google Scholar
  58. Volkmann, D., Sievers, A. (1979) Graviperception in multicellular organs. In: Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 573–600, Haupt, W., Feinleib, M.E., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  59. Wardrop, A.B. (1983) Evidence for the possible presence of a microtrabecular lattice in plant cells. Protoplasma 115, 81–87Google Scholar
  60. Weisenseel, M.H., Kicherer, R.M. (1981) Ionic currents as control mechanism in cytomorphogenesis. In: Cell biology monographs, vol. 8: Cytomorphogenesis in plants, pp. 379–399, Kiermayer, O., ed. Springer, Wien New YorkGoogle Scholar
  61. Wick, S.M., Hepler, P.K. (1980) Localization of Ca++-containing antimonate precipitates during mitosis. J. Cell Biol. 86, 500–513Google Scholar
  62. Wilson, H.J. (1970) Endoplasmic reticulum and microtubule formation in dividing cells of higher plants — a postulate. Planta 94, 184–190Google Scholar
  63. Woodcock, C.L.F. (1971) The anchoring of nuclei by cytoplasmic microtubules in Acetabularia. J. Cell Sci. 8, 611–621Google Scholar
  64. Wunderlich, F., Speth, V. (1970) Antimitotic agents and macronuclear divisions of ciliates. IV. Reassembly of microtubules in macronuclei of Tetrahymena adapting to colchicine. Protoplasma 70, 139–152Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. Hensel
    • 1
  1. 1.Botanisches Institut der UniversitätBonn 1Federal Republic of Germany

Personalised recommendations