Marine Biology

, Volume 81, Issue 3, pp 293–298

Molecules from cyanobacteria and red algae that induce larval settlement and metamorphosis in the mollusc Haliotis rufescens

  • A. N. C. Morse
  • C. A. Froyd
  • D. E. Morse


Potent inducers of metamorphosis of planktonic larvae of the gastropod mollusc Haliotis rufescens have been found in the following phycobiliprotein-producing cyanobacteria. Synechococcus spp. (one marine and one freshwater strain). Synechocystis spp. (one hypersaline and one freshwater strain) and Spirulina platensis (a freshwater strain). No inducers were detected in the bacterium Escherichia coli. Inducers from one of the cyanobacteria (S. platensis) were partially purified and compared to inducers from the foliose red macroalga Porphyra sp. and the crustose coralline red alga Lithothamnium californicum. In all three species the inducers can be largely separated from the biliproteins, with which they appear to be associated, by high-resolution gel-filtration chromatography. The molecular weights of the relatively small inducing molecules resolved by these procedures from cyanobacteria and red algac are similar, falling in the range of 640 to 1 250 daltons. The amenability of the cyanobacteria to largescale cultivation, and to physiological and genetic manipulation, make them useful for production of metamorphic inducers of marine invertebrate larval metamorphosis, and for further studies of the synthesis, structure and mechanism of action of such inducing molecules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Andrews, P.: The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595–606 (1965)Google Scholar
  2. Barnes, J. R. and J. J. Gonor: The larval settling response of the lined chiton Tonicella lineata. Mar. Biol. 20, 259–264 (1973)Google Scholar
  3. Bonen, L. and W. F. Doolittle: On the prokaryotic nature of red algal chloroplasts. Proc. natn. Acad. Sci. U.S.A. 72, 2310–2314 (1975)Google Scholar
  4. Bonen, L. and W. F. Doolittle: Partial sequences of 16S rRNA and the phylogeny of the blue-green algae and chloroplasts. Nature, Lond. 261, 669–673 (1976)Google Scholar
  5. Bradford, M. A.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248–254 (1976)Google Scholar
  6. Crofts, D. R.: Haliotis L.M.B.C. Mem. typ. Br. mar. Pl. Anim. 29, 1–174 (1929)Google Scholar
  7. Heslinga, G.: Larval development, settlement and metamorphosis of the tropical gastropod Trochus niloticus. Malacologia 20, 349–357 (1981)Google Scholar
  8. Kirchman, D., S. Graham, D. Reish and R. Mitchell: Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirobidae). J. exp. mar. Biol. Ecol. 56, 153–163 (1982)Google Scholar
  9. Kuhlemeier, C. J., W. E. Borrias, C. A. M. J. J. van den Hondel and G. A. van Arkel: Vectors for cloning in cyanobacteria: construction and characterization of two recombinant plasmids capable of transformation to Escherichia coli K12 and Anacystis nidulans R2. Molec. gen. Genetics 184, 249–254 (1981)Google Scholar
  10. Miller, J. H.: Experiments in molecular genetics, 466 pp. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory 1972Google Scholar
  11. Morse, A. N. C. and D. E. Morse: Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surfaces of crustose red algae. J. exp. mar. Biol. Ecol. 75, 191–215 (1984a)Google Scholar
  12. Morse, A. N. C. and D. E. Morse: GABA-mimetic molecules from Porphyra (Rhodophyta) induce metamorphosis of Haliotis (Gastropoda) larvae. Hydrobiologia (In press). (1984b)Google Scholar
  13. Morse, D. E.: Biochemical and genetic engineering for improved production of abalones and other valuable molluscs. In: Advances in aquaculture and fisheries science: recent advances in cultivation of Pacific molluscs, pp 263–282, Ed. by D. E. Morse, K. K. Chew and R. Mann. New York: Elsevier 1984aGoogle Scholar
  14. Morse, D. E.: Biochemical control of larval recruitment and marine fouling. In: Marine biodeterioration, Ed. by J. Costlow. Arlington: Naval Institute Press (In press) 1984bGoogle Scholar
  15. Morse, D. E., H. Duncan, N. Hooker, A. Baloun and G. Young: GABA induces behavioral and developmental metamorphosis in planktonic molluscan larvae. Fedn Proc. Fedn Am. Socs exp. Biol. 38, 3237–3241 (1980a)Google Scholar
  16. Morse, D. E., H. Duncan, N. Hooker and A. Morse: Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase. Science, N.Y. 196, 298–300 (1977)Google Scholar
  17. Morse, D. E., N. Hooker and H. Duncan: GABA induces metamorphosis in Haliotis, V. Stereochemical specificity. Brain Res. Bull. (USA) 5, (Suppl. 2), 381–387 (1980b)Google Scholar
  18. Morse, D. E., N. Hooker, H. Duncan and L. Jensen: γ-aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science, N.Y. 204, 407–410 (1979)Google Scholar
  19. Morse, D. E., M. Tegner, H. Duncan, N. Hooker, G. Trevelyan and A. Cameron. Induction of settling and metamorphosis of planktonic molluscan (Haliotis) larvae. III. Signaling by metabolites of intact algae is dependent on contact. In: Chemical signals, pp 67–86. Ed. by D. Müller-Schwartze and R. M. Silverstein. New York: Plenum 1980cGoogle Scholar
  20. Müller, W. A.: Auslösung der Metamorphose durch Bakterien bei den Larven von Hydractinia echinata. Zool. Jb. (Abt. Anat. Ont. Tiere) 86, 84–95 (1969)Google Scholar
  21. Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman and R. Y. Stanier: Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. gen. Microbiol. 111, 1–61 (1979)Google Scholar
  22. Rumrill, S. S. and R. A. Cameron: Effects of gamma-aminobutyric acid on the settlement of larvae of the black chiton Katharina tunicata. Mar. Biol. 72, 243–247 (1983)Google Scholar
  23. Saito, K.: The appearance and growth of 0-year-old Ezo abalone. Bull. Jap. Soc. scient. Fish. 47, 1393–1400 (1981)Google Scholar
  24. Shepherd, S. A.: Studies on southern Australian abalone (genus Haliotis). I. Ecology of five sympatric species. Aust. J. mar. Freshwat. Res. 24, 217–257 (1973)Google Scholar
  25. Sherman, L. A. and P. van de Putte: Construction of a hybrid plasmid capable of replication in the bacterium Escherichia coli and the cyanobacterium Anacystis nidulans. J. Bact. 150, 410–413 (1982)Google Scholar
  26. Shestakov, S. V. and N. T. Khyen: Evidence for genetic transformation in blue-green alga Anacystis nidulans. Molec. gen. Genetics 107, 372–375 (1970)Google Scholar
  27. Stanier, R. Y. and G. Cohen-Bazire: Phototrophic prokaryotes: the cyanobacteria. A. Rev. Microbiol. 31, 225–274 (1977)Google Scholar
  28. Steneck, R. S.: A limpet-coralline alga association: adaptations and defenses between a selective herbivore and its prey. Ecology 63, 507–522 (1982)Google Scholar
  29. Weiner, R. M. and R. R. Colwell: Induction of settlement and metamorphosis in Crassostrea virginica by a melanin-synthesizing bacterium. Tech. Rep. Univ. Md Sea Grant Progm. UM-SG-TS-82-05, 1–44 (1982)Google Scholar
  30. Williams, G. K. and A. A. Szalay: Stable integration of foreign DNA into the chromosome of the cyanobacterium Synechococcus R2. Gene (Amsterdam, Elsevier) 24, 37–51 (1983)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. N. C. Morse
    • 1
    • 2
  • C. A. Froyd
    • 1
    • 2
  • D. E. Morse
    • 1
    • 2
  1. 1.Marine Science InstituteUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.the Department of Biological SciencesUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations