Advertisement

Marine Biology

, Volume 76, Issue 3, pp 279–284 | Cite as

Asexual production of planulae in the coral Pocillopora damicornis

  • J. A. Stoddart
Article

Abstract

The reproduction of scleractinian corals through planular larvae has traditionally been viewed as a strictly sexual process. Here, the results of an electrophoretic study of a ubiquitous Indo-Pacific coral, Pocillopora damicornis, show an exact inheritance of parental genotypes by brooded planulae, demonstrating the existence of an asexual mode of production of planular larvae. Comparisons of the genetical structure of a number of populations with structures predicted for sexual reproduction suggest that, although there is probably also a sexual form of reproduction, asexually produced planulae can be of major importance in the maintenance of populations of this species.

Keywords

Genetical Structure Sexual Reproduction Parental Genotype Scleractinian Coral Electrophoretic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Black, R. and M. S. Johnson: Asexual viviparity and population genetics of Actinia tenebrosa. Mar. Biol. 63, 27–31 (1979)Google Scholar
  2. Brown, A. D., A. C. Matheson and K. C. Eldridge: Estimation of the mating system of Eucalyptus obliqua by using allozyme polymorphisms. Aust. J. Bot. 23, 931–949 (1975)Google Scholar
  3. Connell, J. H.: Population ecology of reef-building corals. In: Biology and geology of coral reefs II, pp 205–246. Ed. by O. A. Jones and R. Endean, New York: Academic Press 1973Google Scholar
  4. Foster, A. B.: Phenotypic plasticity in the reef corals Montastrea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J. exp. mar. Biol. Ecol. 39, 25–54 (1979)CrossRefGoogle Scholar
  5. Foster, A. B.: Environmental variation in skeletal morphology within the Caribbean reef corals Montastrea annularis and Siderastrea siderea. Bull. mar. Sci. 30, 678–709 (1980)Google Scholar
  6. Grigg, R. W. and J. E. Maragos: Recolonization of hermatypic corals on submerged larva flows in Hawaii. Ecology 55, 387–395 (1974)Google Scholar
  7. Goreau, T. F.: Mass expulsion of zooxanthellae from Jamaican reef corals after Hurricane Flora. Science. N.Y. 145, 383–386 (1964)Google Scholar
  8. Harrigan, J. F.: The planula larva of Pocillopora damicornis: lunar periodicity of swarming and substratum selection behaviours, 303 pp. Ph. D. thesis, Honolulu: University of Hawaii 1972Google Scholar
  9. Highsmith, R. C.: Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–220 (1982)Google Scholar
  10. Hyman, L.: The invertebrates I. Protozoa through Ctenophora, 726 pp. New York: McGraw-Hill 1940Google Scholar
  11. Kojis, B. L. and N. J. Quinn: Aspects of sexual reproduction and larval development in the shallow water hermatypic coral Goniastrea australensis (Edwards and Haime, 1857). Bull. mar. Sci. 31, 558–574 (1981)Google Scholar
  12. Loya, Y.: The Red Sea coral Stylophora pistillata is an r-strategist. Nature, Lond. 259, 478–480 (1976)Google Scholar
  13. Marshall, S. M. and T. A. Stephenson: The breeding of reef animals. Part 1. The corals. Scient. Rep. Gt Barrier Reef 1 (8), 219–245 (1933)Google Scholar
  14. Muscatine, L.: Nutrition of corals. In: Biology and geology of coral reefs II. pp 77–116. Ed by O. A. Jones and R. Endean, New York: Academic Press 1973Google Scholar
  15. Muscatine, L. and E. Cernichiari: Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole 137, 506–523 (1969)Google Scholar
  16. Nicholls, E. A. and F. H. Ruddle: A review of enzyme polymorphism, linkage and electrophoretic conditions for mouse somatic cell hybrids in starch gels. J. Histochem. Cytochem. 21, 1066–1081 (1973)PubMedGoogle Scholar
  17. Orr, J., J. P. Thorpe and M. A. Carter: Biochemical genetical confirmation of the asexual reproduction of brooded offspring in the sea anemone Actinia equina. Mar. Ecol. Prog. Ser. 7, 227–229 (1982)Google Scholar
  18. Ottaway, J. R. and G. R. Kirby: Genetic relationships between brooding and brooded Actinia tenebrosa. Nature, Lond. 255, 221–222 (1975)Google Scholar
  19. Potts, D. C.: Differentiation in coral populations. Atoll Res. Bull. 220, 55–74 (1978)Google Scholar
  20. Reed, S. A.: Techniques for raising the planula larva and newly settled polyps of Pocillopora damicornis. In: Experimental coelenterate biology, pp 66–74. Ed. by H. M. Lenhoff, L. Muscatine and L. V. Davis. Honolulu: University of Hawaii Press 1981Google Scholar
  21. Richmond, R. H. and P. L. Jokiel: Lunar periodicity in larva release in the reef coral Pocillopora damicornis at Enewetak and Hawaii. Bull. mar. Sci. (In press) (1983)Google Scholar
  22. Rinkevich, B. and Y. Loya: The reproduction of the Red Sea coral Stylophora pistillata. I. Gonads and planulae. Mar. Ecol. Prog. Ser. 1, 133–144 (1979)Google Scholar
  23. Rosen, B. R.: The tropical high diversity enigma — the coral's eye view. In: Chance, change and challenge: the evolving biosphere, pp 103–129. Ed. by P. L. Florey, Cambridge: Cambridge University Press 1981Google Scholar
  24. Rosen, B. R. and J. L. Taylor: Reef coral from Aldabra: new mode of reproduction. Science, N. Y. 166 119–121 (1969)Google Scholar
  25. Sammarco, P. W.: Polyp bail-out: an escape response to environmental stress and a new method of reproduction in corals. Mar. Ecol. Prog. Ser. 10, 57–65 (1982)Google Scholar
  26. Schoenberg, D. A. and R. K. Trench: Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal and specificity in its symbiosis with marine invertebrates. I. Isozyme and soluble protein patterns of axenic culture of Symbiodinium microdriaticum. Proc. R. Soc. (Ser. B) 207, 405–427 (1980a)Google Scholar
  27. Schoenberg, D. A. and R. K. Trench: Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum. Proc. R. Soc. (Ser. B) 207, 445–460 (1980b)Google Scholar
  28. Sebens, K. P.: Asexual reproduction in Anthopleura elegantissma (Anthozoa: Actiniaria): seasonality and extent of clones. Ecology 63, 434–444 (1982)Google Scholar
  29. Selander, R. K., M. H. Smith, S. Y. Yang and W. E. Johnson: Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse Peromyscus polionotus. Stud. Genet., Austin Tex. 6, 49–90 (1971)Google Scholar
  30. Stimson, J. S.: Reproduction of some common Hawaiian reef corals. In: Coelenterate ecology and behaviour, pp 271–280. Ed. by G. O. Mackie. New York: Plenum Press 1976Google Scholar
  31. Stimson, J. S.: Mode and timing of reproduction in some common hermatypic corals of Hawaii and Enewetak. Mar. Biol. 48, 173–184 (1978)Google Scholar
  32. Stoddart, J. A.: A genotypic diversity measure. J. Hered. (In press)Google Scholar
  33. Vandermeulen, J. H.: Studies on reef corals. II. Fine structure of planktonic larva of Pocillopora damicornis, with emphasis on the aboral epidermis. Mar. Biol. 27, 239–249 (1974)Google Scholar
  34. Veron, J. E. N. and M. Pichon: Scleractinia of Eastern Australia. Part 1. Monograph Ser. Aust. Inst. mar. Sci. 1, 1–86 (1976)Google Scholar
  35. Wijsman-Best, M.: Habitat induced modification of reef corals (Faviidae) and its consequences for taxonomy. Proc. 2nd int. Symp. coral Reefs 2, 217–228 (1974). (Ed. by A. M. Cameron et al. Brisbane: Great Barrier Reef Committee)Google Scholar
  36. Williams, G. C.: Sex and evolution, 200 pp. Princeton: Princeton University Press 1975Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. A. Stoddart
    • 1
  1. 1.Department of ZoologyUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations