Marine Biology

, Volume 100, Issue 1, pp 31–40 | Cite as

Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin

  • A. B. Josefson
  • B. Widbom
Article

Abstract

The response of benthic macro-and meiofauna to severe hypoxia was studied in the deep basis (115 m) of Gullmar Fjord, western Sweden. Abundances and bionasses of the faunal taxa, the redox-potential of the sediment, and the temperature, salinity and dissolved oxygen in the bottom water were recorded over the period 1977 to 1981. In the winter of 1979/80, when a depressed oxygen level of 0.21 ml l-1 was recorded, the macrofaunal component of the fauna disappeared. The ensuing recolonization, with an initial peak of opportunistic capitellid polychaetes, proceeded slowly and the pre-collapse community was not reestablished within 1 1/2 yr after the hypoxia. In contrast, the permanent meiofauna exhibited no clear signs of being affected by the hypoxia. In the temporary meiofauna, polychaetes seemed to be negatively affected. The finding of a differential response of macro-and meiofauna confirms previous studies which indicate that macrofauna in general is more sensitive than meiofauna to low oxygen concentrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Boaden, P. J. S. (1977). Thiobiotic facts and fancies (Aspects of the distribution and evolution of anaerobic meiofauna). Mikrofauna Meeresboden 61: 45–63Google Scholar
  2. Boaden, P. J. S. (1980). Meiofauna thiobios and “the Arenicola negation”: case not proven. Mar. Biol. 58: 25–29Google Scholar
  3. Bouwman, L. A., Romeijn, K., Admiraal, W. (1984). On the ecology of meiofauna in an organically polluted estuarine mudflat. Estuar. cstl. Shelf. Sci. 19: 633–653Google Scholar
  4. de Bovee, F. (1975). La nematofaune des vases autopolluees des Iles Kerguelen (Terres Australes et Antarctiques Francaises). cah. Biol. Mar. 16: 711–720Google Scholar
  5. Coull, B. C. (1969). Hydrographic control of meiobenthos in Bermuda. Limnol. Oceanogr. 14: 953–957Google Scholar
  6. Dales, R. P., Warren, L. M. (1980). Survival of hypoxic conditions by the polychaete Cirriformia tentaculata. J. mar. biol. Ass. U.K. 60: 509–516Google Scholar
  7. Dries, R. R., Theede, H. (1974). Sauerstoffmangelresistenz mariner Bodenvertebraten aus der westlichen Ostsee. Mar. Biol. 25: 327–333Google Scholar
  8. Elmgren, R. (1973). Methods of sampling sublittoral soft bottom meiofauna. Oikos. Suppl. 15: 112–120Google Scholar
  9. Elmgren, R. (1975). Benthic meiofauna as indicator of oxygen conditions in the northern Baltic proper. Merentutkimuslaitoksen Julk. Havsforskningsinst.Skr. 239: 265–271Google Scholar
  10. Fenchel, T., Riedl, R. J. (1970). The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7: 255–268Google Scholar
  11. Gaston, G. R. (1985) Effects of hypoxia on macrobenthos of the inner shelf off Cameron, Louisiana. Estuar. cstl Shelf Sci. 20: 603–613Google Scholar
  12. Gerlach, S. A. (1977). Means of meiofauna dispersal. Mikrofauna Meeresboden 61: 89–103Google Scholar
  13. Grassle, J. F., Grassle, J. P. (1974). Opportunistic life histories and genetic systems in marine benthic polychaetes. J. Mar. Res. 32: 253–284Google Scholar
  14. Jansson, B. O. (1967). The importance of tolerance and preference experiments for interpretation of mesopsammon field experiments. Helgoländer wiss. Meeresunters. 15: 41–58Google Scholar
  15. Jensen, P. (1983). Meiofaunal abundance and vertical zonation in a sublittoral soft bottom, with a test of the Haps corer. Mar. Biol. 74: 319–326Google Scholar
  16. Jonasson, A., Olausson, E. (1966). New devices for sediment sampling. Mar. Geol. 4: 365–371Google Scholar
  17. Josefson, A. B. (1981). Persistence and structure of two deep macrobenthic communities in the Skagerrak (west coast of Sweden). J. exp. mar. Biol. Ecol. 50: 63–97Google Scholar
  18. Jørgensen, B. B. (1980). Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos 34: 68–76Google Scholar
  19. Lasserre, P., Renaud-Mornant, J. (1973). Resistance and respiratory physiology of intertidal meiofauna to oxygen-deficiency. Neth. J. Sea Res 7: 290–302Google Scholar
  20. Lindahl, O. (1987). Plankton community dynamics in relation to water exchange in the Gullmar Fjord, Sweden. Ph. D. Thesis, University of Stockholm, StockholmGoogle Scholar
  21. Lindahl, O., Hernroth, L. (1983). Phyto-zooplankton community in coastal waters of western Sweden—An ecosystem off balance? Mar. Ecol. Prog. Ser. 10: 119–126Google Scholar
  22. Meyers, M. B., Fossing, H., Powell, E. N. (1987). Microdistribution of interstitial meiofauna, oxygen and sulfide gradients, and the tubes of macro-infauna. Mar. Ecol. Prog. Ser. 35: 223–241Google Scholar
  23. Ott, J., Schiemer, F. (1973). Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Neth. J. Sea Res. 7: 233–243Google Scholar
  24. Palmer, M. A., Gust, G. (1985). Dispersal of meiofauna in a turbulent tidal creek. J. Mar. Res. 43: 179–210Google Scholar
  25. Pearson, T. H., Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16: 229–311Google Scholar
  26. Reise, K., Ax, P. (1979). A meiofaunal “thiobios” limited to the anaerobic sulfide system of marine sand does not exist. Mar. Biol. 54: 225–237Google Scholar
  27. Rhoads, D. C., Morse, J. W. (1971). Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4: 413–428Google Scholar
  28. Rosenberg, R. (1977). Benthic macrofaunal dynamics, production and dispersion in an oxygen-deficient estuary of west Sweden. J. exp. mar. Biol. Ecol. 26: 107–133Google Scholar
  29. Rosenberg, R. (1980). Effect of oxygen deficiency on benthic macrofauna in fjords. In: Freeland, H. J., Farmer, D. M., Levings, C. D. (eds.) Fjord oceanography. Plenum Publ. Corp., New York, p. 499–514Google Scholar
  30. Rosenberg, R. (1985). Eutrophication-the future marine coastal nuisance. Mar. Pollut. Bull. 16: 227–231Google Scholar
  31. Rosenberg, R., Olsson, I., Ölundh, E. (1977). Energy flow model of an oxygen-deficient estuary on the Swedish west coast. Mar. Biol. 42: 99–107Google Scholar
  32. Rydberg L. (1977). Circulation in the Gullmaren—a sill fjord with externally maintained stratification. Inst. of Oceanography, Univ. of Gothenburg, Report No. 23 (mimeo)Google Scholar
  33. Santos, S. L., Simon, J. L. (1980). Response of soft-bottom benthos to annual catastrophic disturbance in a South Florida estuary. Mar. Ecol. Prog. Ser. 3: 347–355Google Scholar
  34. Siegel, S. (1956). Nonparametric statistics for the behavioural sciences. McGraw-Hill, New YorkGoogle Scholar
  35. Theede, H. (1973). Comparative studies of the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates. Neth. J. Sea Res. 7: 244–252Google Scholar
  36. Theede, H., Ponat, A., Hiroki, K., Schlieper, C. (1969). Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulfide. Mar. Biol. 2: 325–337Google Scholar
  37. Van Es, F. B., Van Arkel, M. A., Bouwman, L. A., Schröder, H. G. J. (1980). Influence of organic pollution on bacterial, macrobenthic and meiobenthic populations in intertidal flats of the Dollard. Neth. J. Sea Res. 14: 288–304Google Scholar
  38. Weigelt, M., Rumohr, H. (1986). Effects of wide-range oxygen depletion on benthic fauna and demersal fish in Kiel Bay 1981–1983. Meeresforschung 31: 124–136Google Scholar
  39. Widbom, B. (1983). Colonization of azoic sediment by sublittoral meiofauna in Gullmar Fjord-Swedish west coast. Proc. 17th Eur. mar. biol. Symp.: 213–217 [Boufler, J. (ed.) Oceanologica Acta vol. spéc.]Google Scholar
  40. Widbom, B. (1984). Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna. Mar. Biol. 84: 101–108Google Scholar
  41. Wieser, W. and Kanwisher, J. (1969). Ecological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts. Limnol. Oceanogr. 6: 262–270Google Scholar
  42. Wieser, W., Ott, J., Schiemer, F., Gnaiger, E. (1974). An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda. Mar. Biol. 26: 235–248Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. B. Josefson
    • 1
  • B. Widbom
    • 2
  1. 1.Kristineberg Marine Biological StationFiskebäckskilSweden
  2. 2.Department of ZoologyUniversity of StockholmStockholmSweden

Personalised recommendations