Advertisement

Planta

, Volume 177, Issue 2, pp 169–177 | Cite as

Characterization of the isolated calcium-binding vesicles from the green alga Mougeotia scalaris, and their relevance to chloroplast movement

  • Franz Grolig
  • Gottfried Wagner
Article

Abstract

The calcium-binding vesicles from the green alga Mougeotia scalaris were isolated and characterized after staining in vivo by neutral red or rhodamine B. They were found to possess, a protonated group with a pKa-9.9, typifying phenolic hydroxyl groups; upon titration, both, phenolic compound(s) and vital dye were concomitantly released from the vesicular matrix. A shift in peak absorbance from 450 nm to 540 nm of the vitally stained vesicles indicated that the neutral form of neutral red was bound to the vesicular, matrix as an intermediate form, stabilized via intermolecular hydrogen bonds to the phenolic compound(s). Up to 8.5.109 dye molecules were calculated to be adsorbed to a mean-size vesicle. Analysis of Langmuir adsorption isotherms, indicated that there were two binding sites each for both neutral red and rhodamine B. The isolated vesicles were devoid of calcium, probably because vesicular calcium, bound to the vesicle matrix, was displaced upon dye binding. Dye adsorption to the vesicles in vivo results in substantial inhibition of the reorientational movement of the Mougeotia chloroplast and is explained by dye-mediated disorder of the cellular calcium homoeostasis.

Key words

Calcium (vesicles, binding) Chlorophyta Chloroplast movement Mougeotia (calcium vesicles) Phenolic compounds Vesicle (vital staining, calcium) 

Abbreviations

NR

neutral red

RB

rhodamine B

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, P. (1956) Spektralphotometrische Untersuchungen am Neutralrot (I), Prototropiegleichgewichte und Normaltemperaturspektren im sichtbaren und ultravioletten Spektralbereich. Z. Phys. Chem. N.F. 9, 74–94Google Scholar
  2. Dreyer, E.M., Weisenseel, M.H. (1979) Phytochrome-mediated uptake of calcium in Mougeotia cells. Planta 146, 31–39Google Scholar
  3. Grob, K., Matile, P. (1979) Vacuolar location of glucosinolates in horseradish root cells. Plant Sci. Lett. 14, 327–335Google Scholar
  4. Grolig, F. (1986) Calcium-Vesikel und lichtabhängige Chloroplastenreorientierung bei Mougeotia spec. Ph.D. Thesis, Justus-Liebig-University, Giessen, FRGGoogle Scholar
  5. Grolig, F., Wagner, G. (1987) Vital staining permits isolation of calcium vesicles from the green alga Mougeotia. Planta 171, 433–437Google Scholar
  6. Grolig, F., Wagner, G. (1988) Light-dependent chloroplast reorientation in Mougeotia and Mesotaenium: Biased by pigment-regulated plasmalemma anchorage sites to actin filaments?. Bot. Acta 101, 2–6Google Scholar
  7. Haupt, W. (1970) Hellort-und Dunkelrot-Wechselwirkungen bei der Chloroplastendrehung von Mougeotia. Wiss. Z. Ernst-Moritz-Arndt-Universität Greifswald, Math. Naturwiss. Reihe 19, 47–54Google Scholar
  8. Haupt, W. (1987) Phytochrome control of intracellular movement. In: Phytochrome and photoregulation in plants, pp. 225–237, Furuya, M., ed. Academic Press, LondonGoogle Scholar
  9. Haupt, W., Weisenseel, M.H. (1976) Physiological evidence and some thoughts on localized responses intracellular localization and action of phytochrome. In: Light and plant development, pp. 63–74, Smith, H., ed. Butterworths, LondonGoogle Scholar
  10. Hepler, P.K., Wayne, R.O. (1985) Calcium and plant development. Annu. Rev. Plant Physiol. 36, 397–439Google Scholar
  11. Klein, K., Wagner, G., Blatt, M.R. (1980) Heavy-meromyosindecoration of microfilaments from Mougeotia protoplasts. Planta 150, 354–356Google Scholar
  12. Levine, B.A., Williams, R.J.P. (1982) Calcium binding to proteins and other large biological anion centers. In: Calcium and Cell Function 2, pp. 1–38, Cheung, W., ed. Academic Press, LondonGoogle Scholar
  13. Moor, H., Mühlethaler, K. (1963) Fine structure in frozenetched yeast cells. J. Cell Biol. 17, 27–46Google Scholar
  14. Morrison, R.T., Boyd, R.N. (1973) Organic chemistry, 3rd ed. Allyn and Bacon, Inc., Boston, Mass., USAGoogle Scholar
  15. Rossbacher, R. (1982) Mikroanalytische Untersuchungen zur Ionenkompartimentierung bei den zygnemalen Grünalgen Mougeotia, Spirogyra und Zygnema. Ph.D. Thesis, University of Erlangen-Nürnberg, FRGGoogle Scholar
  16. Roux, S.J. (1984) Ca2+ and phytochrome action in plants. BioScience 34, 1, 25–29Google Scholar
  17. Russ, U., Grolig, F., Wagner, G. (1988) Differentially adsorbed vital dyes inhibit chloroplast movement in Mougeotia scalaris. Protoplasma, in pressGoogle Scholar
  18. Senger, H. (1970) Characterisierung einer Synchronkultur von Scenedesmus obliguus, ihrer potentiellen Photosyntheseleistung und des Photosynthese-Quotienten während des Entwicklungscyclus. Planta 90, 243–266Google Scholar
  19. Serlin, B.S., Roux, S.J. (1984) Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+-ionophore A 23187, and by calmodulin antagonists. Proc. Natl. Acad. Sci. USA 81, 6368–6372Google Scholar
  20. Volkmann, D. (1981) Structural differentiation of membranes involved in the secretion of polysaccharide slime by root cap cells of cress (Lepidium sativum L.). Planta 151, 180–188Google Scholar
  21. Wagner, G., Haupt, W., Laux, A. (1972) Reversible inhibition of chloroplast movement by cytochalasin B in the green alga Mougeotia. Science 176, 808–809Google Scholar
  22. Wagner, G., Klein, K. (1978) Differential effect, of calcium on chloroplast movement in Mougeotia. Photochem. Photobiol. 27, 137–140Google Scholar
  23. Wagner, G., Rossbacher, R. (1980) X-ray microanalysis and chlorotetracycline staining of calcium vesicles in the green alga Mougeotia. Planta 149, 298–305Google Scholar
  24. Wagner, G., Valentin, P., Dieter, P., Marmé, D. (1984) Identification of calmodulin in the green alga Mougeotia and its possible function in chloroplast reorientational movement. Planta 162, 62–67Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Franz Grolig
    • 1
  • Gottfried Wagner
    • 1
  1. 1.Botanisches Institut I der Justus-Liebig-UniversitätGiessenFederal Republic of Germany

Personalised recommendations