Marine Biology

, Volume 93, Issue 4, pp 641–650 | Cite as

Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes

  • O. Giere
  • C. Langheld


From differences in size and structure, it appears there are two species of gram-negative bacteria in the gutless oligochaetes Phallodrilus leukodermatus and P. planus from Bermuda. A non-random, differentiated and consisten distribution pattern of the extracellular bacteria along the length of the worm's body underlines the regulated nature of the bacterial colonization. This emerges also from studies on the transfer of the bacteria between host generations: exceptional for oligochaetes, eggs are deposited singly in a sticky mucus sheath and not together in a cocoon. They become infected immediately at oviposition, apparently by intrusion from large ‘stores’ of bacteria in a genital pad abutting the female pores. During ontogenesis, a balance is established between extracellular, active bacteria and intracellular lytic forms enclosed in vacuoles by the epidermal cells. In early developmental stages, lytic bacteria prevail, but older worms harbour mainly extracellular prokaryotes underneath their cuticle. The thick epidermis/cuticle complex is differentiated in regular zones with a progressive trend towards enclosing and digesting bacteria intracellularly in the deeper layers. These are the first results on the transfer and biological fate of endosymbiotic bacteria living in animals from ‘sulfide biotopes’.


Sulfide Epidermal Cell Regulate Nature Host Generation Early Developmental Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Belkin, S., D. C. Nelson and H. W. Jannasch: Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. mar. biol. Lab., Woods Hole 170, 110–121 (1986)Google Scholar
  2. Brinkhurst, R. O. and B. G. M. Jamieson: Aquatic Oligochaeta of the world, 860 pp. Edinburgh: Oliver and Boyd 1971Google Scholar
  3. Cavanaugh, C. M.: Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, Lond. 302, 58–61 (1983)Google Scholar
  4. Cavanaugh, C. M.: Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. Biol. Soc. Wash. 6, 373–388 (1985)Google Scholar
  5. Dando, P. R., A. J. Southward and E. C. Southward: Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc. R. Soc. Lond. B 227, 227–247 (1986)Google Scholar
  6. Dando, P. R., A. J. Southward, E. C. Southward, N. B. Terwilliger and R. C. Terwilliger: Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar. Ecol. Prog. Ser. 23, 85–98 (1985)Google Scholar
  7. Erséus, C.: Taxonomy and phylogeny of the gutless Phallodrilinae (Oligochaeta, Tubificidae), with description of one new genus and twenty-two new species. Zool. Scr. 13, 239–272 (1984)Google Scholar
  8. Felbeck, H., G. Liebezeit, R. Dawson and O. Giere: CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol. 75, 187–191 (1983)Google Scholar
  9. Fiala-Médioni, A. and C. Métivier: Ultrastructure of the gill of the hydrothermal vent bivalve Calyptogena magnifica, with a discussion of its nutrition. Mar. Biol. 90, 215–222 (1986)Google Scholar
  10. Fischer, E.: The function of chloragosomes, the specific age-pigment granules of annelids — a review. Exp. Gerontol. 12, 69–74 (1977)Google Scholar
  11. Fisher, M. R. and S. C. Hand: Chemoautotrophic symbionts in the bivalve Lucina floridana from seagrass beds. Biol. Bull. mar. biol. Lab., Woods Hole 167, 445–459 (1984)Google Scholar
  12. Flügel, H. J. and I. Langhoff: A new hermaphroditic pogonophore from the Skagerrak. Sarsia 68, 131–138 (1983)Google Scholar
  13. Giere, O.: The gutless marine oligochaete Phallodrilus leukodermatus. Structural studies on an aberrant tubificid associated with bacteria. Mar. Ecol. Prog. Ser. 5, 353–357 (1981)Google Scholar
  14. Giere, O.: Structure and position of bacterial endosymbionts in the gill filaments of Lucinidae from Bermuda (Mollusca, Bivalvia). Zoomorphology 105, 296–301 (1985a)Google Scholar
  15. Giere, O.: The gutless marine tubificid Phallodrilus planus, a flattened oligochaete with symbiotic bacteria. Results from morphological and ecological studies. Zool. Scr. 14, 279–286 (1985b)Google Scholar
  16. Giere, O., H. Felbeck, R. Dawson and G. Liebezeit: The gutless oligochaete Phallodrilus leukodermatus Giere, a tubificid of structural, ecological and physiological relevance. Hydrobiologia 115, 83–89 (1984)Google Scholar
  17. Giere, O., G. Liebezeit and R. Dawson: Habitat conditions and distribution pattern of the gutless oligochaete Phallodrilus leukodermatus. Mar. Ecol. Prog. Ser. 8, 291–299 (1982)Google Scholar
  18. Giere, O. and O. Pfannkuche: Biology and ecology of marine Oligochaeta, a review. Oceanogr. mar. Biol. A. Rev. 20, 173–308 (1982)Google Scholar
  19. Holstein, A. F. and U. Wulfhekel: Die Semidünnschnitt-Technik als Grundlage für eine cytologische Beurteilung der Spermatogenese des Menschen. Andrologie 3, 65–69 (1971)Google Scholar
  20. Jannasch, H. W.: Microbial processes at deep sea hydrothermal vents. In: Hydrothermal processes at sea floor spreading centers, pp 677–709. Ed. by P. A. Rona, K. Bostrom, L. Laubier and K. L. Smith, Jr. New York: Plenum Publ. Corp. 1984Google Scholar
  21. Koch, A.: Insects and their endosymbionts. In: Symbiosis, vol. 2, pp 1–106. Associations of invertebrates, birds, ruminants and other biota. Ed. by S. M. Henry. New York: Academic Press 1967Google Scholar
  22. Kuenen, J. G.: Colourless sulfur bacteria and their role in the sulfur cycle. Plant Soil 43, 49–76 (1975)Google Scholar
  23. Lévi, C. and P. Lévi: Embryogenèse de Chondrosia reniformis (Nardo), démosponge ovipare, et transmission des bactéries symbiontiques. Ann. Sci. nat., Zool. 12e Sér, 18, 367–380 (1976)Google Scholar
  24. Richards, K. S., T. P. Fleming and B. G. M. Jamieson: An ultrastructural study of the distal epidermis and the occurrence of subcuticular bacteria in the gutless tubificid Phallodrilus albidus (Oligochaeta: Annelida). Aust. J. Zool. 30, 327–336 (1982)Google Scholar
  25. Shively, J. M., F. Ball, D. H. Brown and R. E. Saunders: Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science, N.Y. 182, 584–586 (1973)Google Scholar
  26. Slepecky, R. A. and J. H. Law: A rapid spectrophotometric assay of α-, β-unsaturated acid and β-hydroxy acid. Analyt. Chem. 32, 1697–1699 (1961)Google Scholar
  27. Southward, E. C.: Bacterial symbionts in Pogonophora. J. mar. biol. Ass. U.K. 62, 889–906 (1982)Google Scholar
  28. Sprent, J. I.: The biology of nitrogen-fixing organisms, 196 pp. London: McGraw-Hill Book Company 1979Google Scholar
  29. Steudel, R.: Neue Entwicklungen in der Chemie des Schwefels und des Selens. Nova Acta Leopoldina 59, No. 264, 231–246 (1985)Google Scholar
  30. Vetter, R. D.: Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88, 33–42 (1985)Google Scholar
  31. Wiessner, W.: The family Beggiatoaceae. In: The prokaryotes. A handbook on habitats, isolation and identification of bacteria, pp 380–389. Ed. by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel. Berlin: Springer 1981Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • O. Giere
    • 1
  • C. Langheld
    • 1
  1. 1.Zoologisches Institut und MuseumUniversität HamburgHamburg 13Federal Republic of Germany

Personalised recommendations